Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Measurements of ozone absorption cross section with ratiometric and non-ratiometric methods

Tay Ching En Marcus, Mohd Haniff Ibrahim and Nor Hafizah Ngajikin
 

Download this article

Abstract. In ultraviolet absorption spectroscopy, absorption cross section (ACS) is a parameter important for calculating ozone concentrations. In this work we have determined the ACS at the room temperature and normal pressure. The ozone concentration has been recorded in the region 450–989 ppm, using a compact aluminium gas cell of 5 cm optical path length. We have also compared the results derived with the ratiometric and non-ratiometric methods based on the Beer–Lambert law. Our experimental results demonstrate that the non-ratiometric method can compete with the ratiometric method whenever the measuring times are relatively short.

Keywords: absorption cross section, concentration, gas, ozone, ratiometric method, sensors

PACS: 07.07.Df, 33.20.Kf, 42.25.Bs, 42.79.Pw, 42.81.-i, 78.20.Ci
UDC: 542.7+535.3+681.7
Ukr. J. Phys. Opt. 16 61-67
doi: 10.3116/16091833/16/1/61/2015

Received: 29.01.2015

Анотація. В ультрафіолетовій спектроскопії поглинання перетин поглинання (ПП) є важливим параметром для розрахунку концентрації озону. У цій роботі визначено ПП за кімнатної температури та нормального тиску. Концентрацію озону вимірювали за допомогою компактної алюмінієвої газової комірки з довжиною оптичного шляху 5 см при концентраціях озону 450–989 млн−1. Ми також порівняли результати, одержані за логометричним і нелогометричним методами, які базуються на законі Буґера–Ламберта–Бера. Дані наших експериментів засвідчують, що нелогометричний метод може конкурувати з логометричним методом, якщо лише часи вимірювань порівняно малі. 

REFERENCES
  1. Brion J, Chakir A, Daumont D, Malicet J and Parisse C, 1993. High-resolution laboratory ab-sorption cross section of O3. Temperature effect. Chem. Phys. Lett. 213: 610–612. doi:10.1016/0009-2614(93)89169-I
  2. Daumont D, Brion J, Charbonnier J and Malicet J, 1992. Ozone UV spectroscopy I. Absorption cross-sections at room temperature. J. Atmos. Chem. 15: 145–155. doi:10.1007/BF00053756
  3. Malicet J, Daumont D, Charbonnier J, Parisse C, Chakir A and Brion J, 1995. Ozone UV spec-troscopy. II. Absorption cross-sections and temperature dependence. J. Atmos. Chem. 21: 263–273. doi:10.1007/BF00696758
  4. Voigt S, Orphal J, Bogumil K and Burrows J P, 2001. The temperature dependence (203–293 K) of the absorption cross sections of O3 in the 230–850 nm region measured by Fourier-transform spectroscopy. J. Photochem. Photobiol. A: Chem. 143: 1–9. doi:10.1016/S1010-6030(01)00480-4
  5. Hearn A G, 1961. The absorption of ozone in the ultra-violet and visible regions of the spectrum. Proc. Phys. Soc. 78: 932–940. doi:10.1088/0370-1328/78/5/340
  6. Marcus T C E, David M, Yaacob M, Salim M R, Ibrahim M H, Ngajikin N H and Azmi A I, 2013. Absorption cross section simulation: a preliminary study of ultraviolet absorption spectroscopy for ozone gas measurement. J. Teknol. 64: 95–98.
  7. Campbell I M. Energy and the atmosphere: A physical-chemical approach. 2nd Ed. Chichester: John Wiley & Sons Ltd (1986) pp. 12–14.
  8. Clark B J, Frost T and Russell M A. Techniques in visible and ultraviolet spectrometry. Volume 4: UV spectroscopy, techniques, instrumentation, data handling. Boundary Row, London: Chapman & Hall (1993) p. 6.
  9. Bass A M and Paur R J. The ultraviolet cross-sections of ozone: I. The measurements. In: Zerefos C S and Ghazi A (Eds). Atmospheric Ozone. Netherlands: Springer (1985) p. 606–610. doi:10.1007/978-94-009-5313-0_120
  10. Degner M, Damaschke N, Ewald H, O'Keeffe S and Lewis E. UV LED-based fiber coupled optical sensor for detection of ozone in the ppm and ppb range. IEEE Sensors Conference. Conf. Proc. (2009) pp. 95–99.
  11. Degner M, Damaschke N, Ewald H and Lewis E. High resolution LED-spectroscopy for sensor application in harsh environment: a sensor system based on LED-light sources and standard pho-todiode receiver is shown as an example of this sensor concept for in-situ gas measurements down to the ppb range. IEEE International Instrumentation and Measurement Technology Conference. Conf. Proc. (2010) pp. 1382–1386.
  12. O'Keeffe S, Ortoneda M, Cullen J D, Shaw A, Phipps D, Al-Shamma'a A I, Fitzpatrick C and Lewis E. Development of an optical fibre sensor system for online monitoring of microwave plasma UV and ozone generation system. IEEE Sensors Conference. Conference proceedings (2008) pp. 454–457.
  13. Aoyagi Y, Takeuchi M, Yoshida K, Kurouchi M, Araki T, Nanishi Y, Sugano H, Ahiko Y and Nakamura H, 2012. High-sensitivity ozone sensing using 280 nm deep ultraviolet light-emitting diode for detection of natural hazard ozone. J. Environ. Prot. 3: 695–699. doi:10.4236/jep.2012.38082
  14. O'Keeffe S, Dooly G, Fitzpatrick C and Lewis E, 2005. Optical fibre sensor for the measurement of ozone. J. Phys.: Conf. Ser. 15: 213–218.
  15. O'Keeffe S, Fitzpatrick C and Lewis E, 2007. An optical fibre based ultra violet and visible absorption spectroscopy system for ozone concentration monitoring. Sens. Actuators B: Chem. 125: 372–378. doi:10.1016/j.snb.2007.02.023
  16. Maria L D and Bartalesi D, 2012. A fiber-optic multisensor system for predischarges detection on electrical equipment. IEEE Sens. J. 12: 207–212. doi:10.1109/JSEN.2011.2147303
  17. Maria L D, Rizzi G, Serragli P, Marini R and Fialdini L. Optical sensor for ozone detection in medium voltage switchboard. IEEE Sensors Conference. Conf. Proc. (2008) pp. 1297–1300.
  18. Maria L D and Rizzi G, 2009. Ozone sensor for application in medium voltage switchboard. J. Sens. 2009: 1–5. doi:10.1155/2009/608714
  19. Yehia A and Mizuno A, 2013. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors. J. Appl. Phys. 113: 183301-1–183301-10. doi:10.1063/1.4804065
  20. Matsumi Y and Kawasaki M, 2003. Photolysis of atmospheric ozone in the ultraviolet region. Chem. Rev. 103: 4767–4781. doi:10.1021/cr0205255
  21. O'Keeffe S, Fitzpatrick C and Lewis E. Ozone measurement using an optical fibre sensor in the visible region. IEEE Sensors Conference. Conf. Proc. (2005) pp. 758–761.
  22. O'Keeffe S, Fitzpatrick C and Lewis E, 2005. Ozone measurement in visible region: an optical fibre sensor system. Electron. Lett. 41: 1317–1319. doi:10.1049/el:20052901
  23. Brion J, Chakir A, Charbonnier J, Daumont D, Parisse C and Malicet J, 1998. Absorption spectra measurements for the ozone molecule in the 350–830 nm region. J. Atmos. Chem. 30: 291–299. doi:10.1023/A:1006036924364
(c) Ukrainian Journal of Physical Optics