Home
page
Other articles
in this issue |
Measurements of ozone
absorption cross section with ratiometric and non-ratiometric methods
Tay Ching En Marcus, Mohd Haniff Ibrahim and
Nor Hafizah Ngajikin
Download this
article
Abstract. In ultraviolet absorption spectroscopy, absorption
cross section (ACS) is a parameter important for calculating ozone concentrations.
In this work we have determined the ACS at the room temperature and normal
pressure. The ozone concentration has been recorded in the region 450–989
ppm, using a compact aluminium gas cell of 5 cm optical path length. We
have also compared the results derived with the ratiometric and non-ratiometric
methods based on the Beer–Lambert law. Our experimental results demonstrate
that the non-ratiometric method can compete with the ratiometric method
whenever the measuring times are relatively short.
Keywords: absorption cross section, concentration,
gas, ozone, ratiometric method, sensors
PACS: 07.07.Df, 33.20.Kf, 42.25.Bs, 42.79.Pw,
42.81.-i, 78.20.Ci
UDC: 542.7+535.3+681.7
Ukr. J. Phys. Opt.
16 61-67
doi: 10.3116/16091833/16/1/61/2015
Received: 29.01.2015
Анотація. В ультрафіолетовій спектроскопії
поглинання перетин поглинання (ПП) є важливим
параметром для розрахунку концентрації
озону. У цій роботі визначено ПП за кімнатної
температури та нормального тиску. Концентрацію
озону вимірювали за допомогою компактної
алюмінієвої газової комірки з довжиною
оптичного шляху 5 см при концентраціях
озону 450–989 млн−1. Ми також порівняли
результати, одержані за логометричним
і нелогометричним методами, які базуються
на законі Буґера–Ламберта–Бера. Дані
наших експериментів засвідчують, що нелогометричний
метод може конкурувати з логометричним
методом, якщо лише часи вимірювань порівняно
малі. |
|
REFERENCES
-
Brion J, Chakir A, Daumont D, Malicet J and Parisse C, 1993. High-resolution
laboratory ab-sorption cross section of O3. Temperature effect. Chem. Phys.
Lett. 213: 610–612. doi:10.1016/0009-2614(93)89169-I
-
Daumont D, Brion J, Charbonnier J and Malicet J, 1992. Ozone UV spectroscopy
I. Absorption cross-sections at room temperature. J. Atmos. Chem. 15: 145–155.
doi:10.1007/BF00053756
-
Malicet J, Daumont D, Charbonnier J, Parisse C, Chakir A and Brion J, 1995.
Ozone UV spec-troscopy. II. Absorption cross-sections and temperature dependence.
J. Atmos. Chem. 21: 263–273. doi:10.1007/BF00696758
-
Voigt S, Orphal J, Bogumil K and Burrows J P, 2001. The temperature dependence
(203–293 K) of the absorption cross sections of O3 in the 230–850 nm
region measured by Fourier-transform spectroscopy. J. Photochem. Photobiol.
A: Chem. 143: 1–9. doi:10.1016/S1010-6030(01)00480-4
-
Hearn A G, 1961. The absorption of ozone in the ultra-violet and visible
regions of the spectrum. Proc. Phys. Soc. 78: 932–940. doi:10.1088/0370-1328/78/5/340
-
Marcus T C E, David M, Yaacob M, Salim M R, Ibrahim M H, Ngajikin N H and
Azmi A I, 2013. Absorption cross section simulation: a preliminary study
of ultraviolet absorption spectroscopy for ozone gas measurement. J. Teknol.
64: 95–98.
-
Campbell I M. Energy and the atmosphere: A physical-chemical approach.
2nd Ed. Chichester: John Wiley & Sons Ltd (1986) pp. 12–14.
-
Clark B J, Frost T and Russell M A. Techniques in visible and ultraviolet
spectrometry. Volume 4: UV spectroscopy, techniques, instrumentation, data
handling. Boundary Row, London: Chapman & Hall (1993) p. 6.
-
Bass A M and Paur R J. The ultraviolet cross-sections of ozone: I. The
measurements. In: Zerefos C S and Ghazi A (Eds). Atmospheric Ozone. Netherlands:
Springer (1985) p. 606–610. doi:10.1007/978-94-009-5313-0_120
-
Degner M, Damaschke N, Ewald H, O'Keeffe S and Lewis E. UV LED-based fiber
coupled optical sensor for detection of ozone in the ppm and ppb range.
IEEE Sensors Conference. Conf. Proc. (2009) pp. 95–99.
-
Degner M, Damaschke N, Ewald H and Lewis E. High resolution LED-spectroscopy
for sensor application in harsh environment: a sensor system based on LED-light
sources and standard pho-todiode receiver is shown as an example of this
sensor concept for in-situ gas measurements down to the ppb range. IEEE
International Instrumentation and Measurement Technology Conference. Conf.
Proc. (2010) pp. 1382–1386.
-
O'Keeffe S, Ortoneda M, Cullen J D, Shaw A, Phipps D, Al-Shamma'a A I,
Fitzpatrick C and Lewis E. Development of an optical fibre sensor system
for online monitoring of microwave plasma UV and ozone generation system.
IEEE Sensors Conference. Conference proceedings (2008) pp. 454–457.
-
Aoyagi Y, Takeuchi M, Yoshida K, Kurouchi M, Araki T, Nanishi Y, Sugano
H, Ahiko Y and Nakamura H, 2012. High-sensitivity ozone sensing using 280
nm deep ultraviolet light-emitting diode for detection of natural hazard
ozone. J. Environ. Prot. 3: 695–699. doi:10.4236/jep.2012.38082
-
O'Keeffe S, Dooly G, Fitzpatrick C and Lewis E, 2005. Optical fibre sensor
for the measurement of ozone. J. Phys.: Conf. Ser. 15: 213–218.
-
O'Keeffe S, Fitzpatrick C and Lewis E, 2007. An optical fibre based ultra
violet and visible absorption spectroscopy system for ozone concentration
monitoring. Sens. Actuators B: Chem. 125: 372–378. doi:10.1016/j.snb.2007.02.023
-
Maria L D and Bartalesi D, 2012. A fiber-optic multisensor system for predischarges
detection on electrical equipment. IEEE Sens. J. 12: 207–212. doi:10.1109/JSEN.2011.2147303
-
Maria L D, Rizzi G, Serragli P, Marini R and Fialdini L. Optical sensor
for ozone detection in medium voltage switchboard. IEEE Sensors Conference.
Conf. Proc. (2008) pp. 1297–1300.
-
Maria L D and Rizzi G, 2009. Ozone sensor for application in medium voltage
switchboard. J. Sens. 2009: 1–5. doi:10.1155/2009/608714
-
Yehia A and Mizuno A, 2013. Ozone generation by negative direct current
corona discharges in dry air fed coaxial wire-cylinder reactors. J. Appl.
Phys. 113: 183301-1–183301-10. doi:10.1063/1.4804065
-
Matsumi Y and Kawasaki M, 2003. Photolysis of atmospheric ozone in the
ultraviolet region. Chem. Rev. 103: 4767–4781. doi:10.1021/cr0205255
-
O'Keeffe S, Fitzpatrick C and Lewis E. Ozone measurement using an optical
fibre sensor in the visible region. IEEE Sensors Conference. Conf. Proc.
(2005) pp. 758–761.
-
O'Keeffe S, Fitzpatrick C and Lewis E, 2005. Ozone measurement in visible
region: an optical fibre sensor system. Electron. Lett. 41: 1317–1319.
doi:10.1049/el:20052901
-
Brion J, Chakir A, Charbonnier J, Daumont D, Parisse C and Malicet J, 1998.
Absorption spectra measurements for the ozone molecule in the 350–830
nm region. J. Atmos. Chem. 30: 291–299. doi:10.1023/A:1006036924364
(c) Ukrainian Journal
of Physical Optics |