Home
page
Other articles
in this issue |
Optical chaos and
oscillations in photorefractive LiNbO3:Fe
Obukhovsky V. and Lemeshko V.
Download this
article
Abstract. Autowaves of scattering appear under excitation of
nonlinear LiNbO3:Fe crystals by a focused laser radiation,
manifesting themselves as moving light-ring structures. A periodic behaviour
of generation of the rings could be related to competition of refractive
index gratings of the two types, reflecting and transmission ones. A chaotic
regime arises if the control parameters, the pump intensity and the impurity
concentration, become less than a threshold
Keywords: LiNbO3:Fe crystals,
photorefraction, optical chaos, autowave light scattering
PACS: 42.65.Hw, 42.65.Sf
UDC: 535.321+544.032.65+530.182.2
Ukr. J. Phys. Opt.
15 68-78
doi: 10.3116/16091833/15/2/68/2014
Received: 16.12.2013
Анотація. Автохвилі розсіяння з’являються
при збудженні нелінійних кристалів LiNbO3:Fe
сфокусованим лазерним випромінюванням
і мають вигляд рухомих світлових кільцевих
структур. Періодичну поведінку генерації
кілець можна пов’язувати з конкуренцією
ґраток показників заломлення двох типів
– відбивного і пропускного. Якщо значення
контрольних параметрів (інтенсивності
нагнітання та концентрації домішок) нижчі
за порогові, то виникає хаотичний режим
розсіяння автохвиль. |
|
REFERENCES
-
Lemeshko V V and Obukhovsky V V, 1985. Autowaves of photoinduced light
scattering. Pisma Zhurn. Techn. Fiz. 11: 573–574.
-
Liu Si-Min, Zhang Guang-Yin, Wang Jin-Long, Ma Xiao-Yan and Fu Yuan-Fen,
1989. Quasi-periodic oscillations in photoinduced conical light scattering
from LiNbO3:Fe crystals. Opt. Commun. 70: 185–189. doi:10.1016/0030-4018(89)90062-X
-
Lemeshko V V, Obukhovsky V V and Stoyanov A V, 1992. Autowave origin under
optical excita-tion of lithium niobate. Izv. RAN, Ser. Fiz. 56: 7–14.
-
Furman A S, 1987. Spontaneous growth of trap charge exchange waves in crystals
without inver-sion center under homogeneous illumination. Fiz. Tverd. Tela.
29: 1076–1085.
-
Safiman M, Zozulya A and Anderson D Z, 1994. Transverse instability of
energy-exchanging counterpropagating waves in photorefractive media. J.
Opt. Soc. Amer. B. 11: 1409–1417. doi:10.1364/JOSAB.11.001409
-
Leonardy J, Kaiser F, Belic M and Hess O, 1996. Running transverse waves
in optical phase con-jugation. Phys. Rev. A. 53: 4519–4527. doi:10.1103/PhysRevA.53.4519
-
Sandfuchs O, Leonardy J, Kaiser F and Belic M, 1997. Transverse instabilities
in photorefractive counterpropagating two-wave mixing. Opt. Lett. 22: 498–500.
doi:10.1364/OL.22.000498
-
Haken H, Synergetics. Berlin–Heidelberg–New York: Springer (1978).
doi:10.1007/978-3-642-96469-5
-
Morozovskaya A N and Obukhovskii V V, 2000. Autowave instability in refractive
crystals. Opt. Spectr. 88: 225–231. doi:10.1134/1.626783
-
Morozovskaya A N and Obukhovskii V V, 2005. Optical autowaves in photorefractive
ferroelectric crystals. Opt. Spectr. 98: 247–256. doi:10.1134/1.1870068
-
Kukhtarev N V, Markov V B, Odulov S G, Soskin M M and Vinetskii V L, 1978.
Holographic storage in electrooptic crystals. Ferroelectrics. 22: 949–964.
doi:10.1080/00150197908239450
-
Morozovska A N and Eliseev E A, 2004. Modeling of dielectric hysteresis
loops in ferroelectric semiconductors with charged defects. J. Phys.: Condens.
Matter. 16: 8937–8956. doi:10.1088/0953-8984/16/49/010
-
Morozovska A N, Eliseev E A, Svechnikov G S and Kalinin S V, 2011. Nanoscale
electromechan-ics of paraelectric materials with mobile charges: Size effects
and nonlinearity of electromechanical response of SrTiO3 films. Phys. Rev.
B. 84: 045402. doi:10.1103/PhysRevB.84.045402
-
Yariv A, Quantum electronics. Wiley (1989).
-
Born M and Wolf E, Principles of optics. Cambridge: Cambridge University
Press (2002).
-
Shamonina E, Sturman B, Odoulov S and Ringhofer K, 1996. Investigation
of stochastic photore-fractive backscattering. J. Opt. Soc. Amer. B. 13:
2242–2251. doi:10.1364/JOSAB.13.002242
-
Odoulov S, Sturman B, Shamonina E and Ringhofer K, 1996. Stochastic photorefractive
backscat-tering from LiNbO3 crystals. Opt. Lett. 21: 854–856. doi:10.1364/OL.21.000854
(c) Ukrainian Journal
of Physical Optics |