Home
page
Other articles
in this issue |
Optically pumped
mirrorless lasing.
A Review.
Part II. Lasing in photonic
crystals and microcavities
Dudok T. H. and Nastishin Yu. A.
Download this
article
Abstract. This article is a second part of the review on optically
pumped mirrorless lasing. Consideration of random lasing presented in the
first part [Nastishin Yu A and Dudok T H, 2013. Ukr. J. Phys. Opt.] is
now followed by analysis of the literature on the lasing in photonic structures,
which is mainly focussed on dye-doped cholesteric liquid crystals and microcavities,
including liquid-crystal microdroplets
Keywords: mirrorless lasing, mirrorless lasers,
photonic bandgap edge lasing, dye-doped cholesteric liquid crystals, liquid
crystal lasers, whispering-gallery modes, optical microcavities
PACS: 42.55.Mv, 42.55.Sa, 42.55.Tv, 42.70.Qs,
61.30.-v, 77.84.Nh, 78.60.Lc
UDC: 535.37+535.35+681.7.069.24+52-626
Ukr. J. Phys. Opt.
15 47-67
doi: 10.3116/16091833/15/2/47/2014
Received: 31.01.2014
Анотація. Ця стаття є другою частиною
огляду про бездзеркальну лазерну генерацію
з оптичним нагнітанням. Розгляд випадкової
лазерної генерації, представлений у першій
частині огляду [Nastishin Yu A and Dudok T H, 2013. Ukr. J.
Phys. Opt.], тут продовжено аналізом літератури
з генерації фотонними структурами, зокрема
холестеричними рідкими кристалами з домішками
барвника і мікрорезонаторами з включенням
мікрокрапель рідких кристалів. |
|
REFERENCES
-
Purcell E M, 1946. Spontaneous emission probability at radio frequencies.
Phys. Rev., Proc. Amer. Phys. Soc. Abstract B10. 69: 674–702.
-
Nastishin Yu A and Dudok T H, 2013. Optically pumped mirrorless lasing.
A review. Part I. Random lasing. Ukr. J. Phys. Opt. 14: 146–170. doi:10.3116/16091833/14/3/146/2013
-
Stokes G G, 1885. On a remarkable phenomenon of crystalline reflection.
Proc. Roy. Soc. 26: 174–186.
-
Rayleigh J W S, 1888. On the remarkable phenomenon of crystalline reflexion
described by Prof. Stokes. Phil. Mag. 26: 256265.
-
Kleman M, Lavrentovich O D and Nastishin Yu A, Dislocation and disclination
in mesomorphic phases, Vol. 12, in 'Dislocations in Solids', Ed. by F R
N Nabarro and J P Hirth, Elsevier, 147–271 (2004). doi:10.1016/S1572-4859(05)80005-1
-
Kleman M, Meyer C and Nastishin Yu A, 2006. Imperfections in focal conic
domains: the role of dislocations. Phil. Mag. 86: 4439–4458. doi:10.1080/14786430600724496
-
De Gennes P G and Prost J, The physics of liquid crystals, 2nd Ed. Oxford:
Clarendon Press (1993).
-
Kogelnik H and Shank C V, 1971. Stimulated emission in a periodic structure.
Appl. Phys. Lett. 18: 152–154. doi:10.1063/1.1653605
-
Shank C V, Bjorkholm J E and Kogelnik H, 1971. Tunable distributed feedback
dye laser. Appl. Phys. Lett. 18: 395–396. doi:10.1063/1.1653714
-
Kogelnik H and Shank C V, 1972. Coupled wave theory of distributed feedback
lasers. J. Appl. Phys. 43: 2327–2335. doi:10.1063/1.1661499
-
Yablonovitch E, 1987. Inhibited spontaneous emission in solid-state physics
and electronics. Phys, Rev. Lett. 58: 2059–2062. doi:10.1103/PhysRevLett.58.2059
-
John S, 1984. Electromagnetic absorption in a disordered medium near a
photon mobility edge. Phys. Rev. Lett. 53: 2169–2172. doi:10.1103/PhysRevLett.53.2169
-
John S, 1987. Strong localization of photons in certain disordered dielectric
superlattices. Phys. Rev. Lett. 58: 2486–2489. doi:10.1103/PhysRevLett.58.2486
-
John S, 1991. Localization of light. Phys. Today. 44: 32–40. doi:10.1063/1.881300
-
Yablonovitch E, 2001. Photonic crystals: Semiconductors of light. Scientific
American. 285: 47–55. doi:10.1038/scientificamerican1201-46
-
Dowling J P, Scalora M, Bloemer M J and Bowden Ch M. 1994. The photonic
band edge laser: A new approach to gain enhancement. J. Appl. Phys. 75:
1896–1899.
-
John S and Quang T, 1991. Localization of superradiance near a photonic
band gap. Phys. Rev. Lett. 74: 3419–3422. doi:10.1103/PhysRevLett.74.3419
-
Baba T, 2008. Slow light in photonic crystals. Nature Photonics. 2: 465–473.
doi:10.1038/nphoton.2008.146
-
Megens M, Wijnhoven J E G J, Lagendijk Ad and Vos W L, 1999. Light sources
inside photonic crystals. J. Opt. Soc. Amer. B. 16: 1403–1408. doi:10.1364/JOSAB.16.001403
-
Bulu I, Caglayan H and Ozbay E, 2003. Radiation properties of sources inside
photonic crystals. Phys. Rev. B. 67: 205103–7. doi:10.1103/PhysRevB.67.205103
-
Wu S–T and Fuh A Y–G, 2005. Lasing in photonic crystals based on dye-doped
holographic polymer-dispersed liquid crystal reflection gratings. Jpn.
J. Appl. Phys. 44: 977–980. doi:10.1143/JJAP.44.977
-
Woltman S J and Crawford G P, 2007. Patterned liquid-crystal laser film
for multi-dimensional multi-color emissive film technology. J. SID. 15/8:
559–564.
-
Jakubiak R, Natarajan L V, Tondiglia V, He G S, Prasad P N, Bunning T J
and Vaia R A, 2004. Electrically switchable lasing from pyrromethene 597
embedded holographic-polymer dis-persed liquid crystals. Appl. Phys. Lett.
85: 6095–6097. doi:10.1063/1.1839282
-
Strangi G, Barna V, Caputo R, De Luca A, Versace C, Scaramuzza N, Umeton
C, Bartolino R and Price G N, 2005. Color-tunable organic microcavity laser
array using distributed feedback. Phys. Rev. Lett. 94: 063903–4. doi:10.1103/PhysRevLett.94.063903
-
Liu N, Guo H, Fu L, Kaiser S, Schweizer H and Giessen H, 2008. Three-dimensional
photonic metamaterials at optical frequencies. Nature. 7: 31–37. doi:10.1038/nmat2072
-
Kobayashi Ch, Yamamoto J and Takanishi Y, 2012. Photonic effect in a hyper-swollen
lyo-tropic lamellar phase. J. Appl. Phys. 112: 013531. doi:10.1063/1.4734001
-
de Vries Hl, 1951. Rotatory power and other optical properties of certain
liquid crystals. Acta Cryst. 4: 219–226. doi:10.1107/S0365110X51000751
-
Schmidtke J and Stille W, 2003. Fluorescence of a dye-doped cholesteric
liquid crystal film in the region of the stop band: theory and experiment.
Eur. Phys. J. B. 31: 179–194. doi:10.1140/epjb/e2003-00022-x
-
Ozaki M, Kasano M, Ganzke D, Haase W and Yoshino K, 2002. Mirrorless lasing
in dye-doped ferroelectric liquid crystal. Adv. Mater. 14: 306–309. doi:10.1002/1521-4095(20020219)14:4<306::AID-ADMA306>3.0.CO;2-1
-
Cao W, Munoz A, Palffy-Muhoray P and Taheri B, 2002. Lasing in a three-dimensional
photonic crystal of the liquid crystal blue phase II. Nature. 1: 111–113.
doi:10.1038/nmat727
-
Yokoyama S, Mashiko S, Kikuchi H, Uchida K and Nagamura T, 2006. Laser
emission from a polymer-stabilized liquid crystal phase. Adv. Mater. 18:
48–51. doi:10.1002/adma.200501355
-
Coles H J, Morris S M, Ford A D, Hands P J W and Wilkinson T D. Red-green-blue
2D tuneable liquid crystal laser devices. Proc. SPIE. 7414: 741402–21.
doi:10.1117/12.831230
-
Pansu B, Nastishin Y, Imperor-Clerc M, Veber M and Nguyen H T, 2004. New
Investigations on the tetragonal liquid crystalline phase or SmQ. Eur.
Phys. J. E. 15: 225–230. doi:10.1140/epje/i2004-10051-y
-
Ruan L Z, Sambles J R and Stewart I W, 2003. Self-organized periodic photonic
structure in a nonchiral liquid crystal. Phys. Rev. Lett. 91: 033901–4.
doi:10.1103/PhysRevLett.91.033901
-
Pishnyak O P, Nastishin Yu A and Lavrentovich O D, 2004. Comment on 'Self-organized
periodic photonic structure in a nonchiral liquid crystal'. Phys. Rev.
Lett. 93: 109401–1. doi:10.1103/PhysRevLett.93.109401
-
Lydon J, 2011. Chromonic liquid crystalline phases. Liq. Cryst. 38: 16631681.
doi:10.1080/02678292.2011.614720
-
Nastishin Yu A, Liu H, Schneider T, Nazarenko V, Vasyuta R, Shiyanovskii
S V and Lavrentovich O D, 2005. Optical characterization of the nematic
lyotropic chromonic liquid crystals: light absorption, birefringence, and
scalar order parameter. Phys. Rev. E. 72: 041711–14. doi:10.1103/PhysRevE.72.041711
-
Kobayashi T, Ed., J-aggregates. Singapore: World Scientific (1996). doi:10.1142/3168
-
Melnikau D, Savateeva D, Chuvilin A, Hillenbrand R and Rakovich Yu P, 2011.
Whispering gallery mode resonators with J-aggregates. Opt. Express. 19:
22280–22291. doi:10.1364/OE.19.022280
-
Fofang N T, Park T–H, Neumann O, Mirin N A, Nordlander P and Halas N
J, 2008. Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate
complexes. Nano Lett. 8: 3481–3487. doi:10.1021/nl8024278
-
Goldberg L S and Shnur J M, 1973. Tunable internal-feedback liquid. U.S.
Pat. No 3,771,065.
-
Kukhtarev N V, 1978. Cholesteric liquid crystal laser with distributed
feedback. Sov. J. Quantum Electron. 8: 774–776. doi:10.1070/QE1978v008n06ABEH010397
-
Il'chishin I P, Tikhonov E A, Tishchenko V G and Shpak T M, 1981. Generation
of tunable radiation by impurity cholesteric liquid crystals. JETP Lett.
32: 24–27.
-
Ilchishin I P and Vakhnin A Yu, 1995. Detecting of the structure distortion
of cholesteric liquid crystal using the generation characteristics of the
distributed feedback laser based on it. Mol. Cryst. Liq. Cryst. 265: 687–697.
doi:10.1080/10587259508041736
-
Kopp V I, Fan B, Vithana H K M and Genack A Z. 1998. Low-threshold lasing
at the edge of a photonic stop band in cholesteric liquid crystals. Opt.
Lett. 23: 1707–1709. doi:10.1364/OL.23.001707
-
Taheri B, Munoz A F, Palffy-Muhoray P and Twieg R, 2001. Low threshold
lasing in cholesteric liquid crystals. Mol. Cryst. Liq. Cryst. 358: 73–82.
doi:10.1080/10587250108028271
-
Munoz A F, Palffy-Muhoray P and Taheri B, 2001. Ultraviolet lasing in cholesteric
liquid crystals. Opt. Lett. 26: 804–804. doi:10.1364/OL.26.000804
-
Ford A D, Moris S M and Coles H J, 2006. Photonics and lasing in liquid
crystals. Mater. Today. 9: 36–42. doi:10.1016/S1369-7021(06)71574-7
-
Coles H and Morris S, 2010. Liquid-crystal lasers. Nature Photonics. 4:
676–685. doi:10.1038/nphoton.2010.184
-
Palto S P, 2006. Lasing in liquid crystal thin films. JETP. 103: 472–479.
doi:10.1134/S1063776106090172
-
Kopp V I, Zhang Zh-Q and Genack A Z, 2003. Lasing in chiral photonic structures.
Progr. Quant. Electron. 27: 369416. doi:10.1016/S0079-6727(03)00003-X
-
Fuh A Y–G, Lin T–H, Liu J–H and Wu F–C, 2004. Lasing in chiral
photonic liquid crystals and associated frequency tuning. Opt. Express.
12: 1857–1863. doi:10.1364/OPEX.12.001857
-
Palto S P, Shtykov N M, Umansky B A, Barnik M I and Blinov L M, 2006. General
properties of lasing effect in cholesteric liquid crystals. Opto-Electron.
Rev. 14: 323–328. doi:10.2478/s11772-006-0044-7
-
Lee C-R, Lin S-H, Yeh H-C, Ji T-D, Lin K-L, Mo T-S, Kuo C-T, Lo K-Y, Chang
S-H, Fuh A Y-G and Huang S-Y, 2009. Color cone lasing emission in a dye-doped
cholesteric liquid crystal with a single pitch. Opt. Express. 17: 12910–12921.
doi:10.1364/OE.17.012910
-
Lee C–R, Lin S–H, Yeh H–C and Ji T–D, 2009. Band-tunable color
cone lasing emission based on dye-doped cholesteric liquid crystals with
various pitches and a pitch gradient. Opt. Express. 17: 22616–22623.
doi:10.1364/OE.17.022616
-
Lee C–R, Lin S–H, Ku H–S, Liu J–H, Yang P–C, Huang S–Y, Yeh
H–C, Ji T–D and Lin C–H, 2010. Spatially band-tunable color-cone
lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable
chiral dopant. Opt. Lett. 35: 1398–1400. doi:10.1364/OL.35.001398
-
Lin S–H and Lee C–R, 2011. Novel dye-doped cholesteric liquid crystal
cone lasers with various birefringences and associated tunabilities of
lasing feature and performance. Opt. Express. 19: 18199–18206. doi:10.1364/OE.19.018199
-
Palto S P, Shtykov N M, Umanskii B A and Barnik M I, 2012. Multiwave out-of-normal
band-edge lasing in cholesteric liquid crystals. J. Appl. Phys. 112: 013105–8.
doi:10.1063/1.4723641
-
Penninck L, Beeckman J, De Visschere P and Neyts K, 2012. Light emission
from dye-doped cholesteric liquid crystals at oblique angles: Simulation
and experiment. Phys. Rev. E. 85: 041702–7. doi:10.1103/PhysRevE.85.041702
-
Blinov L M, Cipparrone G, Pagliusi P, Lazarev V V and Palto S P, 2006.
Mirrorless lasing from nematic liquid crystals in the plane waveguide geometry
without refractive index or gain modulation. Appl. Phys. Lett. 89: 0311114–3.
doi:10.1063/1.2234316
-
Blinov L M, Cipparrone G, Mazzulla A, Pagliusi P, Lazarev V V and Palto
S P, 2008. Quasi-in-plane leaky modes in lasing cholesteric liquid crystal
cells. J. Appl. Phys. 104: 103115–7. doi:10.1063/1.2975971
-
Yoshida H, Inoue Y, Isomura T, Matsuhisa Y, Fujii A and Ozakib M, 2009.
Position sensitive, continuous wavelength tunable laser based on photopolymerizable
cholesteric liquid crystals with an in-plane helix alignment. Appl. Phys.
Lett. 94: 093306–3. doi:10.1063/1.3089846
-
Morris S M, Ford A D, Pivnenko M N and Coles H J. The effects of reorientation
on the emission properties of a photonic band edge liquid crystal laser.
J Opt. A: Pure Appl. Opt. 7: 215–223. doi:10.1088/1464-4258/7/5/002
-
Cao W, Palffy-Muhoray P, Taheri B, Marino A and Abbate G, 2005. Lasing
thresholds of cholesteric liquid crystals lasers. Mol. Cryst. Liq. Cryst.
429: 101–110. doi:10.1080/15421400590930782
-
Morris S M, Ford A D, Gillespie C, M N Pivnenko, Hadeler O and Coles H
J, 2006. The emission characteristics of liquid-crystal lasers. J. SID.
14: 565–573.
-
Woon K L, O'Neill M, Richards G J, Aldred M P and Kelly S M, 2005. Stokes
parameter studies of spontaneous emission from chiral nematic liquid crystals
as a one-dimensional photonic stopband crystal: Experiment and theory.
Phys. Rev. E. 71: 041706–8. doi:10.1103/PhysRevE.71.041706
-
Watanabe Y, Uchimura M, Araoka F, Konishi G–I, Watanabe J and Takezoe
H, 2009. Extremely low threshold in a pyrene-doped distributed feedback
cholesteric liquid crystal laser. Appl. Phys. Express. 2: 102501–3. doi:10.1143/APEX.2.102501
-
Dolgaleva K, Wei S K H, Lukishova S G, Chen S H, Schwertz K and Boyd R
W, 2008. Enhanced laser performance of cholesteric liquid crystals doped
with oligofluorene dye. J. Opt. Soc. Amer. B. 25:1496–1504. doi:10.1364/JOSAB.25.001496
-
Förster T, 1959. Transfer mechanisms of electronic excitation. Disc. Faraday
Soc. 27: 717 doi:10.1039/df9592700007
-
Berggren M, Dodabalapur A, Slusher R E and Bao Z, 1997. Light amplification
in organic thin films using cascade energy transfer. Nature. 389: 466–469.
doi:10.1038/38979
-
Alvarez E, He M, Munoz A F, Palffy-Muhoray P, Serak S V, Taheri B and Twieg
R, 2001. Mirrorless lasing and energy transfer in cholesteric liquid crystals
doped with laser dyes. Mol. Cryst. Liq. Cryst. 369: 75–82. doi:10.1080/10587250108030010
-
Chambers M, Fox M and Grell M, 2002. Lasing from a Förster transfer fluorescent
dye couple dissolved in a chiral nematic liquid crystal. Adv. Func. Mater.
12: 808–810. doi:10.1002/adfm.200290010
-
Sonoyama K, Takanishi Y, Ishikawa K and Takezoe H, 2008. Lowering threshold
by energy transfer between two dyes in cholesteric liquid crystal distributed
feedback lasers. Appl. Phys. Express. 1: 032002–3. doi:10.1143/APEX.1.032002
-
Morris S M, Ford A D, Pivnenko M N and Coles H J, 2005. Enhanced emission
from liquidcrystal lasers. J. Appl. Phys. 97: 023103–9. doi:10.1063/1.1829144
-
Morris S M, Ford A D, Pivnenko M N, Hadeler O and Coles H J, 2006. Correlations
between the performance characteristics of a liquid crystal laser and the
macroscopic material properties. Phys. Rev. E. 74: 061709–5. doi:10.1103/PhysRevE.74.061709
-
Ford A D, Morris S M, Pivnenko M N, Gillespie C O and Coles H J, 2007.
Emission characteristics of a homologous series of bimesogenic liquid-crystal
lasers. Phys. Rev. E. 76: 051703–9. doi:10.1103/PhysRevE.76.051703
-
Chee M G, Song M H, Kim D, Takezoe H and Chung I J, 2007. Lowering lasing
threshold in chiral nematic liquid crystal structure with different anisotropies.
Jpn. J. Appl. Phys. 18: L437–L439. doi:10.1143/JJAP.46.L437
-
Huang Y, Zhou Y, Hong Q, Rapaport A, Bass M and Wu S–T, 2006. Incident
angle and polarization effects on the dye-doped cholesteric liquid crystal
laser. Opt. Commun. 261: 91–96. doi:10.1016/j.optcom.2005.11.049
-
Huang Y, Lin T–H, Zhou Y and Wu S–T, 2006. Enhancing the laser power
by stacking multiple dye-doped chiral polymer films. Opt. Express. 14:
11299–11303. doi:10.1364/OE.14.011299
-
Shtykov N M, Barnik M I, Blinov L M, Umanskii B A and Palto S P, 2007.
Amplification of the emission of a liquid-crystal microlaser by means of
a uniform liquid-crystal layer. JETP Lett. 85: 602–604. doi:10.1134/S002136400712003X
-
Wang Y, Manabe T, Takanishi Y, Ishikawa K, Shao G, Orita A, Otera J and
Takezoe H, 2007. Dependence of lasing threshold power on excitation wavelength
in dye-doped cholesteric liquid crystals. Opt. Commun. 280: 408–411.
doi:10.1016/j.optcom.2007.08.027
-
Mowatt C, Morris S M, Song M H, Wilkinson T D, Friend R H and Coles H J,
2010. Com-parison of the performance of photonic band-edge liquid crystal
lasers using different dyes as the gain medium. J. Appl. Phys. 107: 043101–9.
doi:10.1063/1.3284939
-
Chanishvili A, Chilatya G, Petriashvili G, Barberi R, Bartolino R, Cipparone
G, Mazzulla A and Oriol L, 2004. Lasing in dye-doped cholesteric liquid
crystal: two new tuning strategies. Adv. Mater. 16: 791–795. doi:10.1002/adma.200306542
-
Furumi S, Yokoyama S, Otomo A and Mashiko S, 2004. Phototunable photonic
bandgap in a chiral liquid crystal laser device. Appl. Phys. Lett. 84:
2491–2493. doi:10.1063/1.1699445
-
Bobrovsky A Yu, Boiko N I, Shibaev V P and Wendorf J H, 2003. Cholesteric
mixtures with photochemically tunable circularly polarized fluorescence.
Adv. Mater. 15: 282–287. doi:10.1002/adma.200390067
-
Huang Y, Chen L–P, Doyle Ch, Zhou Y and Wu S–T, 2006. Spatially tunable
laser emission in dye-doped cholesteric polymer films. Appl. Phys. Lett.
88: 011107. doi:10.1063/1.2161167
-
Sonoyama K, Takanishi Y, Ishikawa K and Takezoe H, 2007. Position-sensitive
cholesteric liquid crystal dye laser covering a full visible range. Jpn.
J. Appl. Phys. 46: L874–L876. doi:10.1143/JJAP.46.L874
-
Wang Ch–T and Lin T–H, 2008. Multi-wavelength laser emission in dye-doped
photonic liquid crystals. Opt. Express. 16: 18334–18339. doi:10.1364/OE.16.018334
-
Funamoto K, Ozaki M and Yoshino K, 2003. Discontinuous shift of lasing
wavelength with temperature in cholesteric liquid crystal. Jpn. J. Appl.
Phys. 42: L523–L525. doi:10.1143/JJAP.42.L1523
-
Morris S M, Ford A D and Coles H J, 2009. Removing the discontinuous shifts
in emission wavelength of a chiral nematic liquid crystal laser. J. Appl.
Phys. 106: 023112–4. doi:10.1063/1.3177251
-
De Gennes P G, 1968. Calcul de la distorsion d'une structure cholesterique
par un champ magnetique. Solid State Commun. 6: 163–165. doi:10.1016/0038-1098(68)90024-0
-
Kasano M, Ozaki M, Yoshino K, Ganzke D and Haase W, 2003. Electrically
tunable waveguide laser based on ferroelectric liquid crystal. Appl. Phys.
Lett. 82: 4026–4028. doi:10.1063/1.1580992
-
Shirota K, Sun H–Bo and Kawata S, 2004. Two-photon lasing of dye-doped
photonic crystal lasers. Appl. Phys. Lett. 84: 1632–1634.
-
Chanishvili A, Chilaya G, Petriashvili G, Barberi R, Bartolino R, Cipparrone
G and Mazzulla A, 2004. Laser emission from a dye-doped cholesteric liquid
crystal pumped by another choles-teric liquid crystal laser. Appl. Phys.
Lett. 85: 3378–3380. doi:10.1063/1.1806561
-
Shibaev P V, Tang K, Genack A Z, Kopp V and Green M M, 2002. Lasing from
a stiff chain polymeric lyotropic cholesteric liquid crystal. Macromolecules.
35: 3022–3025. doi:10.1021/ma011738j
-
Schmidtke J, Stille W, Finkelman H and Kim S T, 2002. Laser emission in
a dye doped cholesteric polymer network. Adv. Mater. 14: 746–749. doi:10.1002/1521-4095(20020517)14:10<746::AID-ADMA746>3.0.CO;2-5
-
Finkelmann H, Kim S T, Munoz A, Palffy-Muhoray P and Taheri B, 2001. Tunable
mirrorless lasing in cholesteric liquid crystalline elastomer. Adv. Mater.
13: 1069–1072. doi:10.1002/1521-4095(200107)13:14<1069::AID-ADMA1069>3.0.CO;2-6
-
Matsui T, Ozaki R, Funamoto K, Ozaki M and Yoshino K, 2002. Flexible mirrorless
laser based on a free-standing film of photopolymerized cholesteric liquid
crystal. Appl. Phys Lett. 81: 3741–3743. doi:10.1063/1.1522498
-
Araoka F, Shin K–Ch, Takanishi Y, Ishikawa K, Takezoe H, Zhu Zh and Swager
T M, 2003. How doping a cholesteric liquid crystal with polymeric dye improves
an order parameter and makes possible low threshold lasing. J. Appl. Phys.
94: 279–283. doi:10.1063/1.1578534
-
Yablonovitch E, Gmitter T J, Meade R D, Rappe A M, Brommer K D and Joannopoulos
J D, 1991. Donor and acceptor modes in photonic band structure. Phys. Rev.
Lett. 67: 3380–3383. doi:10.1103/PhysRevLett.67.3380
-
Stoytchev M and Genack A Z, 1997. Microwave transmission through a periodic
three-dimensional metal-wire network containing random scatterers. Phys.
Rev. B. 55: R8617–8621. doi:10.1103/PhysRevB.55.R8617
-
Chabanov A A, Stoytchev M and Genack A Z, 2000. Statistical signatures
of photon localization. Nature. 404: 850–853. doi:10.1038/35009055
-
Yang Y–Ch, Kee Ch–S, Kim J–E and Park H Y, 1999. Photonic defect
modes of cholesteric liquid crystals. Phys. Rev. E. 60: 6852–6854. doi:10.1103/PhysRevE.60.6852
-
Barnik M I, Blinov L M, Lazarev V V, Palto S P, Umanskii B A and Shtykov
N M, 2008. Lasing from photonic structure: Cholesteric-voltage controlled
nematic-cholesteric liquid crystal. J. Appl. Phys. 103: 123113–7. doi:10.1063/1.2948937
-
Song M H, Park B, Shin K–Ch, Ohta T, Tsunoda Y, Hoshi H, Takanishi Y,
Ishikava K, Watanabe J, Nishimura S, Toyooka T, Zhu Zh, Swager T M and
Takezoe H, 2004. Effect of phase retardation on defect mode lasing in polymeric
cholesteric liquid crystals. Adv. Mater. 16: 779–783. doi:10.1002/adma.200306360
-
Song M H, Park B, Toyooka T, Chung I J, Takanishi Y, Ishikava K and Takezoe
H, 2006. Electrotunable non-reciprocal laser emission from a liquid-crystal
photonic device. Adv. Func. Mater. 16: 1793–1798. doi:10.1002/adfm.200600107
-
Kopp V I and Genack A Z, 2002. Twist defect in chiral photonic structures.
Phys. Rev. Lett. 89: 033901–4. doi:10.1103/PhysRevLett.89.033901
-
Schmidtke J, Stille W and Finkelman H, 2003. Defect mode emission of a
dye doped cholesteric polymer network. Phys. Rev. Lett. 90: 083902–4.
doi:10.1103/PhysRevLett.90.083902
-
Schmidtke J and Stille W, 2003. Photonic defect modes of cholesteric liquid
crystal films. Eur. Phys. J. E. 12: 553–564. doi:10.1140/epje/e2004-00027-2
-
Becchi M, Ponti S, Reyes J A and Oldano C, 2004. Defect modes in helical
photonic crystals: An analytic approach. Phys. Rev. B. 70: 033103–4.
doi:10.1103/PhysRevB.70.033103
-
Matsui T, Ozaki M and Yoshino K, 2004. Tunable photonic defect modes in
a cholesteric liquid crystal induced by optical deformation of helix. Phys.
Rev. E. 69: 061715–4. doi:10.1103/PhysRevE.69.061715
-
Takanishi Y, Tomoe N, Ha N Y, Toyooka T, Nishimura S, Ishikava K and Takezoe
H, 2007. Defect-mode lasing from a three-layered helical cholesteric liquid
crystal structure. Jpn. J. Appl. Phys. 46: 3510–3513. doi:10.1143/JJAP.46.3510
-
Song M H, Ha Y, Amemiya K, Park B, Takanishi Y, Ishikava K, Wu J W, Nishimura
S, Toyooka T and Takezoe H, 2006. Defect-mode lasing with lowered threshold
in three-layered hetero-cholesteric liquid-crystal structure. Adv. Mater.
18: 193–197. doi:10.1002/adma.200501438
-
Takanishi Y, Ohtsuka Y, Suzaki G, Nishimura S and Takezoe H, 2010. Low
threshold lasing from dye-doped cholesteric liquid crystal multi-layered
structures. Opt. Express. 18: 12909–12914. doi:10.1364/OE.18.012909
-
Ha N Y, Takanishi Y and Takezoe H, 2007. Simultaneous RGB reflections from
single-pitched cholesteric liquid crystal films with Fibonaccian defects.
Opt. Express. 15: 1024–1029. doi:10.1364/OE.15.001024
-
Ha N Y, Ohtsuka Y, Jeong S M, Nishimura S, Suzaki G, Takanishi Y, Ishikava
K and Takezoe H, 2008. Fabrication of a simultaneous red-green-blue reflector
using single-pitched cho-lesteric liquid crystals. Nature. 7: 43–47.
doi:10.1038/nmat2045
-
Gellermann W, Kohmoto M, Sutherland B and Taylor P C, 1994. Localization
of light waves in Fibonacci dielectric multilayers. Phys. Rev. Lett. 72:
633636. doi:10.1103/PhysRevLett.72.633
-
Negro L D, Stolfi M, Yi Y, Michel J, Duan X, Kimerling L C, Le Blanc J
and Haavisto J, 2004. Photon band gap properties and omnidirectional reflectance
in Si/SiO2 Thue-Morse quasi-crystals. Appl. Phys. Lett. 84: 51865188.
-
Vasconcelos M S and Albuquerque E L, 1999. Transmission fingerprints in
quasiperiodic dielectric multilayers. Phys. Rev. B. 59: 11128–11131.
doi:10.1103/PhysRevB.59.11128
-
Ganic K, Gan X, Gu M, Hain M, Somalingam S, Stankovic S and Tschudi T,
2002. Generation of doughnut laser beams by use of a liquid-crystal cell
with a conversion efficiency near 100%. Opt. Lett. 27: 13511353. doi:10.1364/OL.27.001351
-
Voloschenko D and Lavrentovich O D, 2000. Optical vortices generated by
dislocations in a cholesteric liquid crystal. Opt. Lett. 26: 317–319.
doi:10.1364/OL.25.000317
-
Matsko A B, Savchenkov A A, Strekalov D, Ilchenko V S and Maleki L, 2005.
Review of applications of whispering-gallery mode resonators in photonics
and nonlinear optics. 4, IPN Progress Rep. 15: 42–162.
-
Lord Rayleigh, 1910. The problem of whispering gallery. Philos. Mag. 20:
1001–1004. doi:10.1080/14786441008636993
-
Vahala K J, 2003. Optical microcavities. Nature. 424: 841–846. doi:10.1038/nature01939
-
Chiasera A, Dumeige Y, F’ron P, Ferrari M, Jestin Y, Conti G N, Pelli
S, Soria S and Righini G C, 2010. Spherical whispering-gallery-mode microresonators.
Laser & Photon. Rev. 4: 457482. doi:10.1002/lpor.200910016
-
Collot L, Lef`vre-Seguin V, Brune M, Raimond J M and Haroche S, 1993. Very
high-Q whispering-gallery mode resonances observed on fused silica microspheres.
Europhys. Lett. 23: 327–334. doi:10.1209/0295-5075/23/5/005
-
Sandoghdar V, Treussart F, Hare J, Lef`vre-Seguin V, Raimond J M and Haroche
S, 1996. Very low threshold whispering-gallery-mode microsphere laser.
Phys. Rev. A. 54: R1777–R1780. doi:10.1103/PhysRevA.54.R1777
-
Garret C G B, Kaiser W and Bond W L, 1961. Stimulated emission into optical
whispering modes of spheres. Phys. Rev. 124: 1807–1809. doi:10.1103/PhysRev.124.1807
-
Cai M, Painter O and Vahala K J, 2000. Fiber-coupled microsphere laser.
Opt. Lett. 25: 1430–1432. doi:10.1364/OL.25.001430
-
Yang L and Vahala K J, 2003. Gain functionalization of silica microresonators.
Opt. Lett. 28: 592–594. doi:10.1364/OL.28.000592
-
Kuwata-Gonokami M and Takeda K, 1998. Polymer whispering gallery mode lasers.
Opt. Mater. 9: 12–17. doi:10.1016/S0925-3467(97)00160-2
-
Cha J N, Bartl M H, Wong M S, Popitsch A, Deming T J and Stucky G D, 2003.
Microcavity lasing from block peptide hierarchically assembled quantum
dot spherical resonators. Nano Lett. 3: 907–911. doi:10.1021/nl034206k
-
Yamaguchi K, Niimi T, Haraguchi M, Ookamoto T and Fukui M, 2006. Fabrication
and optical evaluation of silica microsphere coated with J-aggregates.
Jpn. J. Appl. Phys. 45: 6750–6753. doi:10.1143/JJAP.45.6750
-
Nöckel J U, Stone A D, Chen G, Grossman H L and Chang R K, 1996. Directional
emission from asymmetric resonant cavities. Opt. Lett. 21: 1609–1611.
doi:10.1364/OL.21.001609
-
Gmachl C, Capasso F, Narimanov E E, Nöckel J U, Stone A D, Faist J, Sivco
D L and Cho A Y, 1998. High-power directional emission from microlasers
with chaotic resonators. Science. 280: 1556–1564. doi:10.1126/science.280.5369.1556
-
Lacey S and Wang H, 2001. Directional emission from whispering-gallery
modes in deformed fused-silica microspheres Opt. Lett. 26: 1943–1945.
doi:10.1364/OL.26.001943
-
Wang Q J, Yan C, Yu N, Unterhinninghofen J, Wiersig J, Pflügl C, Diehl
L, Edamura T, Yamanishi M, Kan H and Capasso F, 2010. Whispering-gallery
mode resonators for highly uni-directional laser action. Proc. Nat. Acad.
Sci. U.S.A. 107: 22407–22412. doi:10.1073/pnas.1015386107
-
Wiersig J, Unterhinninghofen J, Song Q, Cao H, Hentschel M and Shinohara
S, 2011. Review on unidirectional light emission from ultralow-loss modes
in deformed microdisks. Trends in Nano- and Micro-Cavities. 2011: 109–152.
-
Psaltis D, Quake S R and Yang C, 2006. Developing optofluidic technology
through the fusion of microfluidics and optics. Nature. 442: 381–386.
doi:10.1038/nature05060
-
Kou Q, Yesilyurt I and Chen Y, 2006. Collinear dual-color laser emission
from a microfluidic dye laser. Appl. Phys. Lett. 88: 091101–3. doi:10.1063/1.2179609
-
Li Z, Zhang Z, Scherer A and Psaltis D, 2006. Mechanically tunable optofluidic
distributed feedback dye laser. Opt. Express. 14: 10494–10499. doi:10.1364/OE.14.010494
-
Gersborg-Hansen M and Kristensen A, 2007. Tunability of optofluidic distributed
feedback dye lasers. Opt. Express. 15: 137–142. doi:10.1364/OE.15.000137
-
Song W, Vasdekis A E, Li Z and Psaltis D, 2009. Optofluidic evanescent
dye laser based on a distributed feedback circular grating. Appl. Phys.
Lett. 94: 161110–3. doi:10.1063/1.3124652
-
Aubry G, Kou Q, Soto-Velasco J, Wang C, Meance S, He J J and Haghiri-Gosnet
A M, 2011. A multicolor microfluidic droplet dye laser with single mode
emission. Appl. Phys. Lett. 98: 111111–3. doi:10.1063/1.3565242
-
Humar M and Muševič I, 2011. Surfactant sensing based on whispering-gallery-mode
lasing in liquid-crystal microdroplets. Opt. Express. 19: 19836–19844.
doi:10.1364/OE.19.019836
-
Gottardo S, Cavalieri S, Yaroshchuk O and Wiersma D S, 2004. Quasi-two-dimensional
diffusive random laser action. Phys. Rev. Lett. 93: 263901–4. doi:10.1103/PhysRevLett.93.263901
-
Liu Y J, Suna X W, Elim H I and Ji W, 2006. Gain narrowing and random lasing
from dye-doped polymer-dispersed liquid crystals with nanoscale liquid
crystal droplets. Appl. Phys. Lett. 89: 011111–3. doi:10.1063/1.2219988
-
Humar M and Muševič I, 2010. 3D microlasers from self-assembled cholesteric
liquid-crystal microdroplets. Opt. Express. 18: 26995–27003. doi:10.1364/OE.18.026995
-
Kurik M V and Lavrentovich O D, 1982. Negative-positive monopole transitions
in cholesteric liquid crystals. JETP Lett. 35: 444–447.
-
Nastishin Yu A, Kléman M, Malthête J and Nguyen H T, 2001. Identification
of a TGBA liquid crystal phase via its defects. Eur. Phys. J. E. 5: 353–357.
doi:10.1007/s101890170066
-
Kléman M, Nastishin Yu A and Malthête J, 2002. Defects in a TGBA phase:
A theoretical approach. Eur. Phys. J. E. 8: 67–78. doi:10.1140/epje/i2002-10009-1
-
Lin J–D, Hsieh M–H, Wei G–J, Mo T–S, Huang S–Y and Lee C–R,
2013. Optically tun-able/switchable omnidirectionally spherical microlaser
based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral
dopant. Opt. Express. 21: 15765–15776. doi:10.1364/OE.21.015765
(c) Ukrainian Journal
of Physical Optics |