Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Refined measurements of piezooptic coefficient π66 for the lithium niobate crystals, using a crystalline disk compressed along its diameter

Savaryn V., Krupych O. and Vlokh R.

Download this article

Abstract. We have checked the accuracy and reliability of an experimental technique suggested earlier for determining piezooptic coefficients. It is based on inducing a predefined 2D distribution of mechanical stresses in a transparent material disk compressed along its diameter. We have shown that the technique enables to measure the piezoopic constants with high enough accuracy. The sources of experimental errors are thoroughly analyzed and eliminated. The experimental procedures are presented in detail for the case of measurements of the parameter 66 = 11 12 for the crystalline disk of lithium niobate. Our results conform well to the literature data and evidence high reliability and precision of the technique.
 

Keywords: piezooptic effect, 2D spatial stress distribution, crystalline disks, lithium niobate

PACS: 78.20.H-, 78.20.Ci, 07.10.Lw
UDC: 535.012
Ukr. J. Phys. Opt. 15 30-37
doi: 10.3116/16091833/15/1/30/2014
Received: 03.02.2014

Анотація. У роботі підтверджено високу точність і надійність запропонованого раніше експериментального методу вимірювання п’єзооптичних коефіцієнтів, який базується на заздалегідь відомому 2D розподілі механічних напружень у прозорому кристалічному або скляному диску, стиснутому вздовж діаметра. У роботі ретельно проаналізовано та усунуто джерела похибок експерименту. Отримане значення п’єзооптичного коефіцієнта 66 для кристалів ніобату літію добре узгоджується з літературними даними, визначеними за іншими методами.

REFERENCES
  1. Weber Y-J, 1995. Determination of internal strain by optical measurements. Phys. Rev. B. 51: 12209–12215. doi:10.1103/PhysRevB.51.12209
  2. Narasimhamurty T S, Photoelastic and electrooptic properties of crystals. New York and Lon-don: Plenum Press (1981). doi:10.1007/978-1-4757-0025-1
  3. Slezinger I I, Alievskaya A N and Mironov Yu V, 1985. Piezo-optic devices. Izmeritelnaya Tekhnika. 12: 17–19.
  4. Kemp James C, 1969. Piezo-optical birefringence modulators: new use for a long-known ef-fect. J. Opt. Soc. Amer. 59: 950–954. 
  5. Balakshii V I, Parygin V N and Chirkov L E, Physical fundamentals of acoustooptics. Mos-cow: Radio i Sviaz' (1985).
  6. Xu J and Stroud R, Acousto-optic devices: principles, design, and applications. New York: Wiley (1992).
  7. Shaskolskaya M P, Acoustic crystals. Moscow: Nauka (1982).
  8. Weber M J, Handbook of optical materials. Boca Raton: CRC Press (2003).
  9. Pockels F, Lehrbuch der Kristallooptik. Berlin: Teubner (1906).
  10. Mytsyk B H, 2003. Methods for the studies of the piezo-optical effect in crystals and the analysis of experimental data. Part I. Methodology for the studies of piezo-optical effect. Ukr. J. Phys. Opt. 4: 1–26. doi:10.3116/16091833/4/1/1/2003
  11. Vasylkiv Yu, Kvasnyuk O, Krupych O, Mys O, Maksymuk O and Vlokh R, 2009. Recon-struction of 3D stress fields basing on piezo-optic experiment. Ukr. J. Phys. Opt. 10: 22–37. doi:10.3116/16091833/10/1/22/2009
  12. Skab I, Smaga I, Savaryn V, Vasylkiv Yu and Vlokh R, 2011. Torsion method for measuring piezo-optic coefficients. Cryst. Res. Technol. 46: 23–36.doi:10.1002/crat.201000495
  13. Skab I, 2012. Optical anisotropy induced by torsion stresses in the crystals belonging to point symmetry groups 3 and /3. Ukr. J. Phys. Opt. 13: 158–164. doi:10.3116/16091833/13/3/158/2012
  14. Vasylkiv Yu, Savaryn V, Smaga I, Skab I and Vlokh R, 2011. On determination of sign of the piezo-optic coefficients using torsion method. Appl. Opt. 50: 2512–2518. doi:10.1364/AO.50.002512
  15. Krupych O, Savaryn V, Skab I and Vlokh R, 2011. Interferometric measurements of piezo-optic coefficients by means of four-point bending method. Ukr. J. Phys. Opt. 12: 150–159. doi:10.3116/16091833/12/3/150/2011
  16. Krupych O, Savaryn V, Krupych A, Klymiv I and Vlokh R, 2013. Determination of piezo-optic coefficients of crystals by means of four-point bending. Appl. Opt. 52: 4054–4061. doi:10.1364/AO.52.004054
  17. Krupych O, Savaryn V and Vlokh R, 2014. Precise determination of full matrix of piezo-optic coefficients with a four-point bending technique: the example of lithium niobate crystals. Appl. Opt. 53 (to be publish). doi:10.1364/AO.53.0000B1 
  18. Vasylkiv Yu, Savaryn V, Smaga I, Krupych O, Skab I and Vlokh R, 2011. Studies of piezoop-tic coefficients in LiNbO3 crystals using a crystalline disk compressed along its diameter. Ukr. J. Phys. Opt. 12: 180–190. doi:10.3116/16091833/12/4/180/2011
  19. Mytsyk B G, Andrushchak A S, Demyanyshyn N M, Kost' Y P, Kityk A V, Mandracci P and Schranz W, 2009. Piezo-optic coefficients of MgO-doped LiNbO3 crystals. Appl. Opt. 48: 1904–1911.doi:10.1364/AO.48.001904
  20. Frocht M M, Photoelasticity. London: J. Wiley and Sons (1965).
  21. Vlokh R, Krupych O, Kostyrko M, Netolya V and Trach I, 2001. Gradient thermooptical ef-fect in LiNbO3 crystals. Ukr. J. Phys. Opt. 2: 154–158. doi:10.3116/16091833/2/3/154/2001
(c) Ukrainian Journal of Physical Optics
6B25BE