Home
page
Other articles
in this issue |
Temporal autolocalization
of femtosecond light pulses in the filaments observed in fused silica
Blonskyi I. V., Kadan V. M., Puzikov V. M.
and Grin' L. A.
Download this
article
Abstract. We observe temporal self-compression of the axial component
of femtosecond laser pulse in the filamentation regime in fused silica
and find optimized conditions for the maximum compression. Using spatial
filtration, we extract the axial component of the pulse compressed down
to the duration of 63 fs from the initial 160 fs one. The compressed pulse
can be used as a probe in pump-probe measurements to improve their temporal
resolution.
Keywords: femtosecond laser, filamentation,
self-compression, fused silica
PACS: 42.65.Re 42.65.Jx 52.38.Dx
UDC: 535.561+535.37+535.18
Ukr. J. Phys. Opt.
14 85-90
doi: 10.3116/16091833/14/2/85/2013
Received: 25.02.2013
Анотація. Спостережено часову самокомпресію
аксіальної компоненти фемтосекундного
лазерного імпульсу в режимі філаментації
в плавленому кварці і знайдено оптимізовані
умови максимальної компресії. З використанням
просторової фільтрації відокремлено аксіальну
компоненту імпульсу та скорочено її до
63 фс від початкової тривалості 160 фс. Скорочений
імпульс можна використовувати як зондуючий
для покращення часової розді-льної здатності
у вимірах за схемою "збудження–зондування". |
|
REFERENCES
-
Couairon A and Mysyrowicz A, 2007. Femtosecond filamentation in transparent
media. Phys. Rep. 441: 47–189. doi:10.1016/j.physrep.2006.12.005
-
Hauri C P, Kornelis W, Helbing F W, Heinrich A, Couairon A, Mysyrowicz
A, Biegert J and Keller U, 2004. Generation of intense, carrier-envelope
phase locked few cycle laser pulses through filamentation. Appl. Phys.
B. 79: 673–677. doi:10.1007/s00340-004-1650-z
-
Hauri C P, Guandalini A, Eckle P, Kornelis W, Biegert J and Keller U, 2005.
Generation of intense few-cycle laser pulses through filamentation –
parameter dependence. Opt. Express. 13: 7541–7547. doi:10.1364/OPEX.13.007541PMid:19498780
-
Xiaowei C, Xiaofang L, Jun L, Pengfei W, Xiaochun G, Ruxin L and Zhizhan
X, 2007. Gen-eration of 5 fs, 0.7 mJ pulses at 1 kHz through cascade filamentation.
Opt. Lett. 32: 2402–2404. doi:10.1364/OL.32.002402
-
Koprinkov I G, Suda A, Wang P and Midorikawa K, 2000. Self-compression
of high- inten-sity femtosecond optical pulses and spatiotemporal soliton
generation. Phys. Rev. Lett. 84: 3847–3850. doi:10.1103/PhysRevLett.84.3847PMid:11019221
-
Kosareva O G, Panov N A, Uryupina D S, Kurilova M V, Mazhorova A V, Savel'ev
A B, Volkov R V, Kandidov V P and Chin S L, 2008. Optimization of a femtosecond
pulse self-compression region along a filament in air. Appl Phys. B. 91:
35–43. doi:10.1007/s00340-008-2959-9
-
Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec
T, Corkum P, Heinzmann U, Drescher M and Krausz F, 2001. Attosecond metrology.
Nature. 414: 509–513. doi:10.1038/35107000PMid:11734845
-
Kienberger R, Goulielmakis E., Uiberacker M, Baltuska A, Yakovlev V, Bammer
F, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M
and Krausz F, 2004. Atomic transient recorder. Nature. 427: 817–821.
doi:10.1038/nature02277PMid:14985755
-
Diddams S A, Eaton H K, Zozulya A A and Clement T S, 1998. Amplitude and
phase meas-urements of femtosecond pulse splitting in nonlinear dispersive
media. Opt. Lett. 23: 379–381. doi:10.1364/OL.23.000379
PMid:18084518
-
Lugovoi V N and Prokhorov A M, 1968. A possible explanation of the small-scale
self-focusing filaments. JETP Lett. 7: 117–119.
-
Kandidov V P, Dormidonov A E, Kosareva O G, Chin S L and Liu W, 2009. Self-focusing
and filamentation of powerful femtosecond laser pulses. Self-focusing:
past and present. Ed. by R. W. Boyd. New York: Springer, 371–398. doi:10.1007/978-0-387-34727-1_15
-
Marburger J H, 1975. Self-focusing: theory. Prog. Quant. Electr. 4: 35–110.
doi:10.1016/0079-6727(75)90003-8
-
Shen Y R, The principles of nonlinear optics. Hoboken: Wiley (2003).
-
Smetanina E O, Kompanets V O, Chekalin S V and Kandidov V P, 2012. Femtosecond
laser pulse filamentation under anomalous dispersion in fused silica. Part
1. Numerical investiga-tion. Quant. Electron. 42: 913–919. doi:10.1070/QE2012v042n10ABEH014895
-
Smetanina E O, Kompanets V O, Chekalin S V and Kandidov V P, 2012. Femtosecond
laser pulse filamentation under anomalous dispersion in fused silica. Part
2. Experiment and physi-cal interpretation. Quant. Electron. 42: 920–924.
doi:10.1070/QE2012v042n10ABEH014896
-
Blonskii I V, Kadan V N, Shpotyuk O I, Dmitruk I N and Pavlov I A, 2009.
Direct observa-tion of the space-time transformation of a femtosecond laser
pulse in fused quartz. JETP Lett. 89: 535–539. doi:10.1134/S0021364009110034
-
Blonskyi I, Kadan V, Shpotyuk O and Pavlov I, 2009. Plasma effect on propagation
of fila-mented femtosecond laser pulse in fused silica. Ukr. J. Phys. Opt.
10: 100–108. doi:10.3116/16091833/10/2/100/2009
-
Blonskyi I, Brodyn M, Kadan V, Shpotyuk O, Dmitruk I and Pavlov I, 2009.
Spatiotemporal dynamics of femtosecond filament induced plasma channel
in fused silica. Appl. Phys. B. 97: 829–834. doi:10.1007/s00340-009-3684-8
(c) Ukrainian Journal
of Physical Optics |