Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Temporal autolocalization of femtosecond light pulses in the filaments observed in fused silica

Blonskyi I. V., Kadan V. M., Puzikov V. M. and Grin' L. A.

Download this article

Abstract. We observe temporal self-compression of the axial component of femtosecond laser pulse in the filamentation regime in fused silica and find optimized conditions for the maximum compression. Using spatial filtration, we extract the axial component of the pulse compressed down to the duration of 63 fs from the initial 160 fs one. The compressed pulse can be used as a probe in pump-probe measurements to improve their temporal resolution.

Keywords: femtosecond laser, filamentation, self-compression, fused silica

PACS: 42.65.Re 42.65.Jx 52.38.Dx
UDC: 535.561+535.37+535.18 
Ukr. J. Phys. Opt. 14 85-90
doi: 10.3116/16091833/14/2/85/2013
Received: 25.02.2013

Анотація. Спостережено часову самокомпресію аксіальної компоненти фемтосекундного лазерного імпульсу в режимі філаментації в плавленому кварці і знайдено оптимізовані умови максимальної компресії. З використанням просторової фільтрації відокремлено аксіальну компоненту імпульсу та скорочено її до 63 фс від початкової тривалості 160 фс. Скорочений імпульс можна використовувати як зондуючий для покращення часової розді-льної здатності у вимірах за схемою "збудження–зондування". 

REFERENCES
  1. Couairon A and Mysyrowicz A, 2007. Femtosecond filamentation in transparent media. Phys. Rep. 441: 47–189. doi:10.1016/j.physrep.2006.12.005
  2. Hauri C P, Kornelis W, Helbing F W, Heinrich A, Couairon A, Mysyrowicz A, Biegert J and Keller U, 2004. Generation of intense, carrier-envelope phase locked few cycle laser pulses through filamentation. Appl. Phys. B. 79: 673–677. doi:10.1007/s00340-004-1650-z
  3. Hauri C P, Guandalini A, Eckle P, Kornelis W, Biegert J and Keller U, 2005. Generation of intense few-cycle laser pulses through filamentation – parameter dependence. Opt. Express. 13: 7541–7547. doi:10.1364/OPEX.13.007541PMid:19498780 
  4. Xiaowei C, Xiaofang L, Jun L, Pengfei W, Xiaochun G, Ruxin L and Zhizhan X, 2007. Gen-eration of 5 fs, 0.7 mJ pulses at 1 kHz through cascade filamentation. Opt. Lett. 32: 2402–2404. doi:10.1364/OL.32.002402
  5. Koprinkov I G, Suda A, Wang P and Midorikawa K, 2000. Self-compression of high- inten-sity femtosecond optical pulses and spatiotemporal soliton generation. Phys. Rev. Lett. 84: 3847–3850. doi:10.1103/PhysRevLett.84.3847PMid:11019221 
  6. Kosareva O G, Panov N A, Uryupina D S, Kurilova M V, Mazhorova A V, Savel'ev A B, Volkov R V, Kandidov V P and Chin S L, 2008. Optimization of a femtosecond pulse self-compression region along a filament in air. Appl Phys. B. 91: 35–43. doi:10.1007/s00340-008-2959-9
  7. Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F, 2001. Attosecond metrology. Nature. 414: 509–513. doi:10.1038/35107000PMid:11734845 
  8. Kienberger R, Goulielmakis E., Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M and Krausz F, 2004. Atomic transient recorder. Nature. 427: 817–821. doi:10.1038/nature02277PMid:14985755 
  9. Diddams S A, Eaton H K, Zozulya A A and Clement T S, 1998. Amplitude and phase meas-urements of femtosecond pulse splitting in nonlinear dispersive media. Opt. Lett. 23: 379–381. doi:10.1364/OL.23.000379 PMid:18084518 
  10. Lugovoi V N and Prokhorov A M, 1968. A possible explanation of the small-scale self-focusing filaments. JETP Lett. 7: 117–119.
  11. Kandidov V P, Dormidonov A E, Kosareva O G, Chin S L and Liu W, 2009. Self-focusing and filamentation of powerful femtosecond laser pulses. Self-focusing: past and present. Ed. by R. W. Boyd. New York: Springer, 371–398. doi:10.1007/978-0-387-34727-1_15
  12. Marburger J H, 1975. Self-focusing: theory. Prog. Quant. Electr. 4: 35–110. doi:10.1016/0079-6727(75)90003-8
  13. Shen Y R, The principles of nonlinear optics. Hoboken: Wiley (2003).
  14. Smetanina E O, Kompanets V O, Chekalin S V and Kandidov V P, 2012. Femtosecond laser pulse filamentation under anomalous dispersion in fused silica. Part 1. Numerical investiga-tion. Quant. Electron. 42: 913–919. doi:10.1070/QE2012v042n10ABEH014895
  15. Smetanina E O, Kompanets V O, Chekalin S V and Kandidov V P, 2012. Femtosecond laser pulse filamentation under anomalous dispersion in fused silica. Part 2. Experiment and physi-cal interpretation. Quant. Electron. 42: 920–924. doi:10.1070/QE2012v042n10ABEH014896
  16. Blonskii I V, Kadan V N, Shpotyuk O I, Dmitruk I N and Pavlov I A, 2009. Direct observa-tion of the space-time transformation of a femtosecond laser pulse in fused quartz. JETP Lett. 89: 535–539. doi:10.1134/S0021364009110034
  17. Blonskyi I, Kadan V, Shpotyuk O and Pavlov I, 2009. Plasma effect on propagation of fila-mented femtosecond laser pulse in fused silica. Ukr. J. Phys. Opt. 10: 100–108. doi:10.3116/16091833/10/2/100/2009
  18. Blonskyi I, Brodyn M, Kadan V, Shpotyuk O, Dmitruk I and Pavlov I, 2009. Spatiotemporal dynamics of femtosecond filament induced plasma channel in fused silica. Appl. Phys. B. 97: 829–834. doi:10.1007/s00340-009-3684-8
(c) Ukrainian Journal of Physical Optics