Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
The structure of niobium and tantalum oxides processed by concentrated light flux
Download this article

Palatnikov M., Shcherbina O., Sidorov N. and Bormanis K.

Abstract. The article reports on significant changes occurring in the structure under treatment of Nb2O5 and Та2O5 ceramics by a concentrated light flux (CLF). The changes comprise, in particular, appearance of micro- and nanostructures, as well as changing type of chemical bonding and coordination number of polyhedrons. These structural changes manifest themselves in the corresponding changes in the physical properties. The influences of the CLF on the Nb2O5 and Та2O5 ceramics turn out to be different. The number of nanosize structures appearing in the Та2O5 ceramics is higher, while the changes in the chemical bonding and the coordination of polyhe-drons are different. The differences observed by us are explained by differing melt-ing temperatures of Nb2O5 and Та2O5 and degree of covalence of the chemical bonds Nb–O and Ta–O.

Keywords: niobium and tantalum oxides, structure, concentrated light flux, Raman scattering

PACS: 78.30.Ly, 81.05.Je
UDC: 535.4, 538.9
Ukr. J. Phys. Opt. 13 207-214
doi: 10.3116/16091833/13/4/207/2012

Received: 09.09.2012

Анотація. У роботі виявлено суттєві зміни структури внаслідок обробки керамік Nb2O5 і Та2O5 концентрованим потоком світла. Ці зміни полягають у появі мікро- і наноструктур, зміні типу хімічного зв’язку, координаційного числа та ін. Зміни структури виявляються у змінах фізичних властивостей. Впливи концентрованого потоку світла на кераміки Nb2O5 і Та2O5 різні. Зокрема, кількість нанорозмірних структур, що з’являються в кераміці Та2O5, вища, а зміни хімічного зв’язку і координаційних чисел – різні. Ці відмінності пояснюються відмінностями температур плавлення керамік Nb2O5 та Та2O5 і ступеня ковалентності хімічних зв’язків Nb–O і Ta–O.

REFERENCES
  1. Andrievsky R A, 1994. The obtaining and properties of nanocrystal refractory compounds. Russ. Chem. Rev. 5: 431–448. 
  2. Gigin G N, Mavrin B N and Shabanov V F, Optical Raman-spectra of the crystals, Moscow: Science (1984). 
  3. Palatnikov M, Shcherbina O, Frolov A, Pavlikov V, Chufyrev P, Makarova O and Bormanis K, 2009. For-mation of fractal micro- and nano-structures in ceramic tantalum pentoxide under concentrated flux of light and their effect on thermal expansion, Integr. Ferroelectrics. 108: 89–97. doi:10.1080/10584580903324477 
  4. Palatnikov M N, Sherbina O B, Frolov A A and Voinich E V, 2011. Micro- and nanostructures, elastic properties and temperature resistance of the ceramics having protective coating of concentric light flux treated niobium oxide, Glass Phys. Chem. 37: 79–83. doi:10.1134/S1087659611040134 
  5. Goroschenko Ya G, The chemistry of niobium and tantalum, Kyiv: Naukova dumka (1965). 
  6. Feirbroter F, The chemistry of niobium and tantalum, Moscow: Khimiya (1972). 
  7. McConnell А А, Anderson J S and Rao N R, 1976. Raman spectra of niobium oxides. Spectrochim. Acta A. 32: 1067–1076.
  8. Balachandran U and Eror N G, 1982. Raman spectrum of the high temperature form of Nb2O5, J. Mater. Sci. Lett. 1: 374–376. doi:10.1007/BF00724842 
  9. Dobal P S, Dixit A, Katiyar R S, Choosuwan H, Guo R and Bhalla A S, 2002. Micro-Raman scattering in Nb2O5–TiO2 ceramics. J. Raman Spectr. 33: 121–124. doi:10.1002/jrs.828 
  10. Choosuwan H, Guo R, Bhalla AS, Balachandran U, 2002. Negative thermal expansion behavior in single crystal and ceramic of Nb2O5-based compositions. J. Appl. Phys. 91: 5051 – 5054. doi:10.1063/1.1464232 
  11. Hathaikarn M, Electrical properties of niobium based oxides-ceramics and single crystal fibers grown by the laser-heated pedestal growth (LHPG) technique. Doctor Thesis (319 pages), Pennsylvania State University (2003).
  12. Miroshnikova L D, 1989. Tantalum oxides, Russ. J. Inorg. Chem. 34: 184–187. 
  13. Hummel H-U, Fackler R and Remmert P, 1992. Tantaloxide durch Gasphasenhydrolyse, Druckhydrolyse und Transportreaktion aus 2H-TaS2: Synthesen von TT-Ta2O5 und T-Ta2O5 und Kristallstruktur von T-Ta2O5. Chemische Berichte. 125: 551–556. doi:10.1002/cber.19921250304 
  14. Stephenson N C and Roth R S, 1971. The crystal structure of the high temperature form of Ta2O5. J. Sol. State Chem. 3: 145–153. doi:10.1016/0022-4596(71)90018-1 
  15. Liu X Q, Han X D, Zhang Z, Ji L F and Jiang Y J, 2007. The crystal structure of high temperature phase Ta2O5. Acta Materialia. 55: 2385–2396. doi:10.1016/j.actamat.2006.11.031 
  16. Sidorov N V, Palatnikov M N, Golubjatnik N A, Kalinnikov V T, Mavrin B N, Asonov V A, Olechno-vitch N M, Radyush Yu V and Pushkarev A V, 2004. The display of phase transition ferroelectric-antiferroelectric in Li0.12Na0.88Ta0.4Nb0.6O3 in Raman-spectra. Opt. Spectrosc. 97: 412–418. doi:10.1134/1.1803643 
  17. Sidorov N V, Volk T R, Mavrin B N and Kalinnikov V T, Lithium niobate: defects, photorefraction, Raman spectra, polaritons. Moscow: Science (2003). 
  18. Nakamoto K, Infrared spectra of inorganic and coordination compositions, Moscow: Mir (1966). 
  19. Sidorov N V and Kalinnikov V T, 1999. Structure ordering and Raman spectra in ferroelectric crystals of oxoftor niobates of ammonium, potassium and rubidium M5Nb3OF18 (M = NH4, K, Rb). Inorg. Mater. 35: 135–151. 
  20. Brennecka Geoff L, Payne David A, Sarin Pankaj, Zuo J-M, Kriven Waltraud M and Hellwig Holger, 2007. Phase transformations in the high-temperature form of pure and TiO2-stabilized Ta2O5. J. Amer. Ceram. Soc. 90: 2947–2953. doi:10.1111/j.1551-2916.2007.01790.x 
  21. Ikeya T and Senna M, 1989. Change in the structure during amorphization and crystallization of Ta2O5 un-der mechanical stressing: A comparative study with Nb2O5. J. Non-Crystal Sol. 113: 51–57. doi:10.1016/0022-3093(89)90317-7 
  22. Dobal P S, Katiyar R S, Jiang Y, Guo R, and Bhalla A S, 2000. Micro-Raman scattering and x-ray diffrac-tion studies of (Ta2O5)1–x(TiO2)x ceramics, J. Appl. Phys. 87: 8688–8694. doi:10.1063/1.373597 
(c) Ukrainian Journal of Physical Optics