Home
page
Other articles
in this issue |
Use of motion peculiarities
of test particles for estimating degree of coherence of optical fields
Download this
article
Zenkova C.Yu., Gorsky M.P., Soltys I.V. and
Angelsky P.O.
Abstract. We discuss interconnections between the depth of spatial
inhomogeneity of energy distribution of the optical fields and the velocity
of motion of test particles for the cases of different light scattering
mechanisms during interaction with light. We suggest an additional tool
for determining the degree of coherence of superposing waves that propagate
along mutually orthogonal directions and have orthogonal polarisations,
being linearly polarised in the incidence plane. The use of velocity of
the test particles while estimating the degree of coherence of optical
fields is suggested for the first time.
Keywords: degree of coherence, nanoparticles,
Poynting vector, light scattering
PACS: 42.25.Kb
UDC: 535.41
Ukr. J. Phys. Opt.
13 183-195
doi: 10.3116/16091833/13/4/183/2012
Received: 26.07.2012
Анотація. У роботі обговорено взаємозв’язок
між глибиною просторового розподілу енергії
оптичного поля і швидкістю руху пробних
частинок підчас їхньої взаємодії зі світлом
за умов різних механізмів розсіяння світла.
Запропоновано додатковий спосіб визначення
ступеня когерентності хвиль, які інтерферують,
поширюючись у взаємно ортогональних напрямках,
і ортогонально-лінійно поляризовані в
площині падіння. Використання швидкості
руху пробних частинок для оцінки ступеня
когерентності пропонується вперше. |
|
REFERENCES
-
Angel’skiĭ O V, Ushenko A G, Arkhelyuk A D, Ermolenko S B, Burkovets
D N and Ushenko Yu A, 2000. Laser polarimetry of pathological changes in
biotissues. Opt. Spec-trosc. 89: 973–978. DOI:10.1134/1.1335052
-
Ashkin A, 1970. Acceleration and trapping of particles by radiation pressure.
Phys. Rev. Lett. 24: 156–159. DOI:10.1103/PhysRevLett.24.156
-
Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S, 1986. Observation of a
single-beam gradi-ent force trap for dielectric particles. Opt. Lett. 11:
288–290. DOI:10.1364/OL.11.000288
PMid:19730608
-
Chen C H, Tai P T and Hsieh W F, 2004. Bottle beam from a bare laser for
single-beam trap-ping. Appl. Opt. 43: 6001–6006. DOI:10.1364/AO.43.006001
PMid:15587729
-
Garcés-Chávez V, Roskey D, Summers M D, Melville H, McGoin D, Wright
E M and Dholakia K, 2004. Optical levitation in a Bessel light beam. Appl.
Phys. Lett. 85: 4001–4003. DOI:10.1063/1.1814820
-
Ye J Y, Chang G, Norris T B, Tse C, Zohdy M J, Hollman K W, O’Donnell
M and Baker J R, 2004. Trapping cavitation bubbles with a self-focused
laser beam. Opt. Lett. 29: 2136–2138. DOI:10.1364/OL.29.002136
PMid:15460881
-
Okamoto K and Kawata S, 1999. Radiation force exerted on subwavelength
particles near a nanoaperture. Phys. Rev. Lett. 83: 4534–4537. DOI:10.1103/PhysRevLett.83.4534
-
Volpe C, Quidant R, Badenes G and Petrov D, 2006. Surface plasmon radiation
forces. Phys. Rev. Lett. 96: 238101. DOI:10.1103/PhysRevLett.96.238101
-
Angelsky O V, Besaha R N and Mokhun I I, 1997. Appearance of wave front
dislocations under interference among beams with simple wave fronts. Opt.
Appl. 27: 273–278.
-
Mandel L and Wolf E. Optical coherence and quantum optics. New York: Cambridge
Univer-sity Press (1995).
-
Zhao G and Lü B, 2005. Focal switching of partially polarized Gaussian
Schell-model beams passing through a system with the aperture and astigmatic
lens separated. J. Opt. A: Pure Appl. Opt. 7: 88–93. DOI:10.1088/1464-4258/7/1/014
-
Friberg A T, Visser T D, Wang W and Wolf E, 2001. Focal shifts of converging
diffracted waves of any state of spatial coherence. Opt. Commun. 196: 1–7.
DOI:10.1016/S0030-4018(01)01378-5
-
Wang Li-Gang, Zhao Cheng-Liang, Wang Li-Qin, Lu Xuan-Hui and Zhu Shi-Yao,
2007. Ef-fect of coherence on radiation forces acting on a Rayleigh dielectric
sphere. Opt. Lett. 32: 1393–1395. DOI:10.1364/OL.32.001393
PMid:17546132
-
Ashkin A, Optical trapping and manipulation of neutral particles using
lasers. Singapore: Hackensack; New York: World Scientific (2006).
-
Bekshaev A Ya, Angelsky O V, Sviridova S V and Zenkova C Yu, 2011. Mechanical
action of inhomogeneously polarized optical fields and detection of the
internal energy flows. Adv. Opt. Technol. 2011: 723901.
-
Dienerowitz M, Mazilu M, Reece P J, Krauss T F and Dholakia K, 2008. Optical
vortex trap for resonant confinement of metal nanoparticles. Opt. Express.
16: 4991–4998. DOI:10.1364/OE.16.004991
PMid:18542599
-
Malagninoa N, Pescea G, Sassoa A and Arimondob E, 2002. Measurements of
trapping effi-ciency and stiffness in optical tweezer. Opt. Commun. 214:
15–24. DOI:10.1016/S0030-4018(02)02119-3
-
Zenkova C Yu, Gorsky M P, Soltys I V, Angelsky P O, 2012. On the possibilities
of using inhomogeneity in light energy distribution for estimating the
degree of coherence of superposing waves. Appl. Opt. 51: C38–C43. DOI:10.1364/AO.51.000C38PMid:22505109
-
Angelsky O V, Yermolenko S B, Zenkova C Yu and Angelskaya A O, 2008. Polarization
manifestations of correlation (intrinsic coherence) of optical fields.
Appl. Opt. 47: 5492–5499. PMid:18846192
-
Angelsky O V, Zenkova C Yu, Gorsky M P and Gorodyns'ka N V, 2009. Feasibility
of esti-mating the degree of coherence of waves at the near field. Appl.
Opt. 48: 2784–2788. DOI:10.1364/AO.48.002784
PMid:19458725
-
Angelsky O V, Hanson S G, Zenkova C Yu, Gorsky M P and Gorodyns’ka N
V, 2009. On polarization metrology (estimation) of the degree of coherence
of optical waves. Opt. Express. 17: 15623–15634. DOI:10.1364/OE.17.015623
PMid:19724561
-
Ellis J, Dogariu A, Ponomarenko S and Wolf E, 2005. Degree of polarization
of statistically stationary electromagnetic fields. Opt. Commun. 248: 333–337.
DOI:10.1016/j.optcom.2004.12.050
-
Mujait M, Dogariu A, Wolf E, 2004. A law of interference of electromagnetic
beams of any state of coherence and polarization and the Fresnel-Arago
interference laws. J. Opt. Soc. Amer. A. 21: 2414–2417. DOI:10.1364/JOSAA.21.002414
-
Zenkova C Yu, Gorsky M P, Maksimyak P P and Maksimyak A P, 2011. Optical
currents in vector field, Appl. Opt. 50: 1105–1112. DOI:10.1364/AO.50.001105
PMid:21394183
-
Angelsky O V, Gorsky M P, Maksimyak P P, Maksimyak A P, Hanson S G and
Zenkova C Yu, 2011. Investigation of optical currents in coherent and partially
coherent vector fields. Opt. Express. 19: 660–672. DOI:10.1364/OE.19.000660
PMid:21263605
-
Angelsky O V, Bekshaev A Ya, Maksimyak P P, Maksimyak A P, Hanson S G and
Zenk-ova C Yu, 2012. Orbital rotation without orbital angular momentum:
mechanical action of the spin part of the internal energy flow in light
beams. Opt. Express. 20: 3563–3571. DOI:10.1364/OE.20.003563PMid:22418116
-
Angelsky O V, Bekshaev A Ya, Maksimyak P P, Maksimyak A P, Mokhun I I,
Hanson S G, Zenkova C Yu and Tyurin A V, 2012. Circular motion of particles
suspended in a Gaussian beam with circular polarization validates the spin
part of the internal energy flow. Opt. Express. 20: 1351–11356. DOI:10.1364/OE.20.011351PMid:22565755
-
Palik E D, Handbook of optical constants of solids. San Diego: Academic
(1985).
-
Born M and Wolf E, Principles of optics. Oxford: Pergamon (1980).
-
Nevsky Yu A and Osiptsov A N, 2009. Simulating gravitational convection
of the suspension. Lett. J. Theor. Phys. 35: 98–105.
-
Zenkova C Yu, Gorsky M P, Soltys I V and Angelsky P O, 2012. Influence
of the Brownian movement on the motion of nano and micro-particles in the
inhomogeneous optical field, Opto-electron. Rev. 20: 247–254. DOI:10.2478/s11772-012-0030-1
(c) Ukrainian Journal
of Physical Optics |