Ukrainian Journal of Physical Optics 

Home page

Other articles 

in this issue
Use of motion peculiarities of test particles for estimating degree of coherence of optical fields
Download this article

Zenkova C.Yu., Gorsky M.P., Soltys I.V. and Angelsky P.O.

Abstract. We discuss interconnections between the depth of spatial inhomogeneity of energy distribution of the optical fields and the velocity of motion of test particles for the cases of different light scattering mechanisms during interaction with light. We suggest an additional tool for determining the degree of coherence of superposing waves that propagate along mutually orthogonal directions and have orthogonal polarisations, being linearly polarised in the incidence plane. The use of velocity of the test particles while estimating the degree of coherence of optical fields is suggested for the first time.

Keywords: degree of coherence, nanoparticles, Poynting vector, light scattering

PACS: 42.25.Kb
UDC: 535.41
Ukr. J. Phys. Opt. 13 183-195
doi: 10.3116/16091833/13/4/183/2012

Received: 26.07.2012

Анотація. У роботі обговорено взаємозв’язок між глибиною просторового розподілу енергії оптичного поля і швидкістю руху пробних частинок підчас їхньої взаємодії зі світлом за умов різних механізмів розсіяння світла. Запропоновано додатковий спосіб визначення ступеня когерентності хвиль, які інтерферують, поширюючись у взаємно ортогональних напрямках, і ортогонально-лінійно поляризовані в площині падіння. Використання швидкості руху пробних частинок для оцінки ступеня когерентності пропонується вперше.

  1. Angel’skiĭ O V, Ushenko A G, Arkhelyuk A D, Ermolenko S B, Burkovets D N and Ushenko Yu A, 2000. Laser polarimetry of pathological changes in biotissues. Opt. Spec-trosc. 89: 973–978. DOI:10.1134/1.1335052
  2. Ashkin A, 1970. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24: 156–159. DOI:10.1103/PhysRevLett.24.156
  3. Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S, 1986. Observation of a single-beam gradi-ent force trap for dielectric particles. Opt. Lett. 11: 288–290. DOI:10.1364/OL.11.000288 PMid:19730608
  4. Chen C H, Tai P T and Hsieh W F, 2004. Bottle beam from a bare laser for single-beam trap-ping. Appl. Opt. 43: 6001–6006. DOI:10.1364/AO.43.006001 PMid:15587729
  5. Garcés-Chávez V, Roskey D, Summers M D, Melville H, McGoin D, Wright E M and Dholakia K, 2004. Optical levitation in a Bessel light beam. Appl. Phys. Lett. 85: 4001–4003. DOI:10.1063/1.1814820
  6. Ye J Y, Chang G, Norris T B, Tse C, Zohdy M J, Hollman K W, O’Donnell M and Baker J R, 2004. Trapping cavitation bubbles with a self-focused laser beam. Opt. Lett. 29: 2136–2138. DOI:10.1364/OL.29.002136 PMid:15460881
  7. Okamoto K and Kawata S, 1999. Radiation force exerted on subwavelength particles near a nanoaperture. Phys. Rev. Lett. 83: 4534–4537. DOI:10.1103/PhysRevLett.83.4534
  8. Volpe C, Quidant R, Badenes G and Petrov D, 2006. Surface plasmon radiation forces. Phys. Rev. Lett. 96: 238101. DOI:10.1103/PhysRevLett.96.238101
  9. Angelsky O V, Besaha R N and Mokhun I I, 1997. Appearance of wave front dislocations under interference among beams with simple wave fronts. Opt. Appl. 27: 273–278. 
  10. Mandel L and Wolf E. Optical coherence and quantum optics. New York: Cambridge Univer-sity Press (1995). 
  11. Zhao G and Lü B, 2005. Focal switching of partially polarized Gaussian Schell-model beams passing through a system with the aperture and astigmatic lens separated. J. Opt. A: Pure Appl. Opt. 7: 88–93. DOI:10.1088/1464-4258/7/1/014
  12. Friberg A T, Visser T D, Wang W and Wolf E, 2001. Focal shifts of converging diffracted waves of any state of spatial coherence. Opt. Commun. 196: 1–7. DOI:10.1016/S0030-4018(01)01378-5
  13. Wang Li-Gang, Zhao Cheng-Liang, Wang Li-Qin, Lu Xuan-Hui and Zhu Shi-Yao, 2007. Ef-fect of coherence on radiation forces acting on a Rayleigh dielectric sphere. Opt. Lett. 32: 1393–1395. DOI:10.1364/OL.32.001393 PMid:17546132
  14. Ashkin A, Optical trapping and manipulation of neutral particles using lasers. Singapore: Hackensack; New York: World Scientific (2006). 
  15. Bekshaev A Ya, Angelsky O V, Sviridova S V and Zenkova C Yu, 2011. Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows. Adv. Opt. Technol. 2011: 723901. 
  16. Dienerowitz M, Mazilu M, Reece P J, Krauss T F and Dholakia K, 2008. Optical vortex trap for resonant confinement of metal nanoparticles. Opt. Express. 16: 4991–4998. DOI:10.1364/OE.16.004991 PMid:18542599
  17. Malagninoa N, Pescea G, Sassoa A and Arimondob E, 2002. Measurements of trapping effi-ciency and stiffness in optical tweezer. Opt. Commun. 214: 15–24. DOI:10.1016/S0030-4018(02)02119-3
  18. Zenkova C Yu, Gorsky M P, Soltys I V, Angelsky P O, 2012. On the possibilities of using inhomogeneity in light energy distribution for estimating the degree of coherence of superposing waves. Appl. Opt. 51: C38–C43. DOI:10.1364/AO.51.000C38PMid:22505109
  19. Angelsky O V, Yermolenko S B, Zenkova C Yu and Angelskaya A O, 2008. Polarization manifestations of correlation (intrinsic coherence) of optical fields. Appl. Opt. 47: 5492–5499. PMid:18846192
  20. Angelsky O V, Zenkova C Yu, Gorsky M P and Gorodyns'ka N V, 2009. Feasibility of esti-mating the degree of coherence of waves at the near field. Appl. Opt. 48: 2784–2788. DOI:10.1364/AO.48.002784 PMid:19458725
  21. Angelsky O V, Hanson S G, Zenkova C Yu, Gorsky M P and Gorodyns’ka N V, 2009. On polarization metrology (estimation) of the degree of coherence of optical waves. Opt. Express. 17: 15623–15634. DOI:10.1364/OE.17.015623 PMid:19724561
  22. Ellis J, Dogariu A, Ponomarenko S and Wolf E, 2005. Degree of polarization of statistically stationary electromagnetic fields. Opt. Commun. 248: 333–337. DOI:10.1016/j.optcom.2004.12.050
  23. Mujait M, Dogariu A, Wolf E, 2004. A law of interference of electromagnetic beams of any state of coherence and polarization and the Fresnel-Arago interference laws. J. Opt. Soc. Amer. A. 21: 2414–2417. DOI:10.1364/JOSAA.21.002414
  24. Zenkova C Yu, Gorsky M P, Maksimyak P P and Maksimyak A P, 2011. Optical currents in vector field, Appl. Opt. 50: 1105–1112. DOI:10.1364/AO.50.001105 PMid:21394183
  25. Angelsky O V, Gorsky M P, Maksimyak P P, Maksimyak A P, Hanson S G and Zenkova C Yu, 2011. Investigation of optical currents in coherent and partially coherent vector fields. Opt. Express. 19: 660–672. DOI:10.1364/OE.19.000660 PMid:21263605
  26. Angelsky O V, Bekshaev A Ya, Maksimyak P P, Maksimyak A P, Hanson S G and Zenk-ova C Yu, 2012. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams. Opt. Express. 20: 3563–3571. DOI:10.1364/OE.20.003563PMid:22418116
  27. Angelsky O V, Bekshaev A Ya, Maksimyak P P, Maksimyak A P, Mokhun I I, Hanson S G, Zenkova C Yu and Tyurin A V, 2012. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow. Opt. Express. 20: 1351–11356. DOI:10.1364/OE.20.011351PMid:22565755
  28. Palik E D, Handbook of optical constants of solids. San Diego: Academic (1985).
  29. Born M and Wolf E, Principles of optics. Oxford: Pergamon (1980).
  30. Nevsky Yu A and Osiptsov A N, 2009. Simulating gravitational convection of the suspension. Lett. J. Theor. Phys. 35: 98–105.
  31. Zenkova C Yu, Gorsky M P, Soltys I V and Angelsky P O, 2012. Influence of the Brownian movement on the motion of nano and micro-particles in the inhomogeneous optical field, Opto-electron. Rev. 20: 247–254. DOI:10.2478/s11772-012-0030-1
(c) Ukrainian Journal of Physical Optics