Home
page
Other articles
in this issue |
Interaction of terahertz
electromagnetic field with a metallic grating: Near-field zone
Download this
article
Lyaschuk Yu. M. and Korotyeyev V. V.
Abstract. We have developed a theory for the interaction of THz
radiation with a sub-wavelength metallic grating. The structure of electric
field of the electromagnetic waves under the metallic grating has been
studied for the near-field zone. Spatial distributions of the electric
field components and the electric energy density have been obtained for
the wave transmitted through the grating. An effect of strong local enhancement
of the electric field has been detected. Spatial dependence of po-larisation
of the transmitted wave has been analysed for the near-field zone.
Keywords: terahertz radiation, near-field optics,
plasmonics
PACS: 85.60.-q, 07.57-c, 42.25.Bs, 42.79.Pw
UDC: 537.874, 537.862
Ukr. J. Phys. Opt.
13 142-150
doi: 10.3116/16091833/13/3/142/2012
Received: 14.05.2012
Анотація. Побудовано теорію взаємодії
ТГц-випромінювання з субхвильовою металічною
ґраткою. Проведено дослідження структури
електричного поля електромагнітної хвилі
в близькій зоні цієї ґратки. Одержано просторовий
розподіл компонент вектора електричного
поля та густини електричного енергії електромагнітної
хвилі, що пройшла крізь ґратку. Зазначено
ефект істотного локального підсилення
електричного поля. Проаналізовано просторові
залежності поляризації електромагнітної
хвилі в близькій зоні ґратки. |
|
REFERENCES
-
Sakai K, Terahertz optoelectronics. Springer-Verlag: Berlin Heidelberg
(2005). DOI:10.1007/b80319
-
Federici J and Moeller L, 2010. Review of terahertz and subterahertz wireless
communications. J. Appl. Phys. 107: 111101. DOI:10.1063/1.3386413
-
Knap W, Kachorovskii V, Deng Y, Rumyantsev S, Lu J-Q, Gaska R, Shur M S,
Simin G, Hu X, Asif Khan M, Saylor C A and Brunel L C, 2002. Nonresonant
detection of terahertz radiation in field effect transistors. J. Appl.
Phys. 91: 9346–9353. DOI:10.1063/1.1468257
-
Dyakonov M I, 2010. Generation and detection of terahertz radiation by
field effect transistors. C. R. Physique. 11: 413–420. DOI:10.1016/j.crhy.2010.05.003
-
Popov V V, Polishchuk O V and Shur M S, 2005. Resonant excitation of plasma
oscillations in a partially gated two-dimensional electron layer. J. Appl.
Phys. 98: 033510. DOI:10.1063/1.1954890
-
Aizin G, Popov V and Polishchuk O, 2007. Detection of terahertz radiation
in a slit-grating gated field-effect transistor. Phys. Stat. Sol. C 4:
531–533. DOI:10.1002/pssc.200673316
-
Popov V V, 2011. Plasmon excitation and plasmonic detection of terahertz
radiation in the grat-ing-gate field-effect transistor structures. J. Infrared
Milli Terahertz Waves. 32: 1178–1191. DOI:10.1007/s10762-011-9813-6
-
Otsuji T, Karasawa H, Watanabe T, Suemitsu T, Suemitsu M, Sano E, Knap
W and Ryzhii V, 2010. Emission of terahertz radiation from two-dimensional
electron systems in semiconductor nano-heterostructures. C. R. Physique.
11: 421–432. DOI:10.1016/j.crhy.2010.04.002
-
Laurent T, Sharma R, Torres J, Nouvel P, Blin S, Varani L, Cordier Y, Chmielowska
M, Chenot S, Faurie J-P, Beaumont B, Shiktorov P, Starikov E, Gruzinskis
V, Korotyeyev V V and Kochelap V A, 2011. Voltage-controlled sub-terahertz
radiation transmission through GaN quantum well structure. Appl. Phys.
Lett. 99: 082101. DOI:10.1063/1.3627183
-
Nogajewski K, Łusakowski J, Knap W, Popov V V, Teppe F, Rumyantsev S L
and Shur M S, 2011. Localized and collective magnetoplasmon excitations
in AlGaN/GaN-based grating-gate terahertz modulators, Appl. Phys. Lett.
99: 213501. DOI:10.1063/1.3663626
-
Mikhailov S A, 1999.Tunable solid-state far-infrared sources: New ideas
and prospects. Appl. Phys. 2: 65–108.
-
Chan W L, Deibel J and Mittleman D M, 2007. Imaging with terahertz radiation,
Rep. Prog. Phys. 70: 1325–1379. DOI:10.1088/0034-4885/70/8/R02
-
Kawano Y and Ishibashi K, 2010. On-chip near-field terahertz detection
based on a two-dimensional electron gas. Physica E. 42: 1188–1191. DOI:10.1016/j.physe.2009.11.082
(c) Ukrainian Journal
of Physical Optics |