Home
page
Other articles
in this issue |
The Jaynes–Cummings
model dynamics for nano-optical systems
Download this
article
S. Al-Awfi
Abstract. We investigate a two-level atom Jaynes–Cummings model
and its dynamics for a nano-optical system. The optical system is assumed
to be a hollow cylindrical waveguide with a circular cross section. Since
the system is assumed to have nanoscale dimensions, the interaction process
is strictly affected only by a single waveguide mode. The atom–mode coupling
and the probability amplitudes are evaluated for different waveguide parameters
as functions of the mode frequency
Keywords: nano-optical system, cylindrical
waveguide, Jaynes–Cummings model
PACS: 03.75.Be, 37.30.+i
UDC: 535. 620.3. 539.182
Ukr. J. Phys. Opt.
13 125-134
doi: 10.3116/16091833/13/3/125/2012
Received: 17.03.2012
Анотація. В роботі досліджена дворівневий
атом Джейнса-Каммінгса та його динаміка
в нано-оптичній системі. Припускалось,
що оптична система складається з порожніх
циліндричних хвилеводів з круглим поперечним
перерізом. Оскільки система вважається
нано-розмірною, то на процес взаємодії
впливає тільки одна хвилеводна мода. Оцінено
атомно-модовий зв’язок і амплітуди ймовірності
для різних параметрів хвилеводу, як функції
частоти моди. |
|
REFERENCES
-
Andrews D. Structured light and its applications: An introduction to phase-structured
beams and nanoscale optical forces. Burlington: MA Academic (2008).
-
Austin M and Chou S, 2004. Response to ‘Comment on “Fabrication of
a molecular self-assembled monolayer diode using nano-imprint lithography”’
Nano Lett. 4: 535. DOI:10.1021/nl049818z
-
Akiba E, Enoki H and Nakamura Y, 2004. Nano scale structure such as nano-size
crystallites and defects can be found in conventional hydrogen absorbing
alloys. Mater. Sci. Eng. B. 108: 60–66. DOI:10.1016/j.mseb.2003.10.104
-
Wilk T, Webster S, Kuhn A and Rempe G, 2007. Single-atom single-photon
quantum inter-face. Science. 317: 488–493. DOI:10.1126/science.1143835
PMid:17588899
-
Al-Awfi S, 2011. Atomic decay rate enhancement inside a cylindrical quantum
nanotube. Int. J. Nanomanuf. 4: 84–89. DOI:0.1504/IJNM.2009.028114
-
Lembessis V, Al-Awfi S, Babiker M and Andrews D, 2011. Surface plasmon
optical vortices and their influence on atoms. J. Opt. 13: 064002. DOI:10.1088/2040-8978/13/6/064002
-
Marksteiner S, Savage C, Zoller P and Rolston S, 1994. Coherent atomic
waveguides from hol-low optical fibers: quantized atomic motion. Phys Rev.
A. 50: 2680–2690. DOI:10.1103/PhysRevA.50.2680
PMid:9911188
-
Dowling J and Gea-Banacloche J, 1996. Evanescent light-wave atom mirrors,
resonator, waveguides and traps. Adv. Atom. Mol. Opt. Phys. 37: 1–94.
DOI:0.1016/S1049-250X(08)60098-1
-
Al-Awfi S, Bowaaneh M, and Elabbar A, 2005. Theoretical analysis of channeling
atom through a mono-mode hollow optical fiber. Indian J. Phys. 79(4): 385–390.
-
Bougouffa S and Al-Awfi S, 2009. The dynamics of the Jaynes–Cummings
model in nanos-tructures. Physica Scripta. T134: 014011. DOI:10.1088/0031-8949/2009/T135/014011
-
Al-Awfi S and Babiker M 1998. Atom dynamic between two conducting plates.
Phys Rev. A. 58: 2272–2281. DOI:10.1103/PhysRevA.58.2274
-
Al-Awfi S and Babiker M, 2000. Atomic motion in hollow sub-micron circular
cylinder. Phys. Rev. A. 61: 033401. DOI:10.1103/PhysRevA.61.033401
-
Jaynes E and Cummings F, 1963. Comparison of quantum and semiclassical
theory with ap-pli-cations to beam maser. Proc. IEEE. 51: 89–99. DOI:10.1109/PROC.1963.1664
-
Rippin M and Knight P, 1996. Modified spontaneous emission in cylindrical
micro cavities wave guiding and distributed Bragg reflecting structures.
J. Mod. Opt. 47: 807–832. DOI:10.1080/09500349608232784
-
Al-Awfi S, Bougouffa S and Bawa’aneh M, 2009. Dipole emission rate inside
a nano quan-tum dot resonator. Int. J. Nanomanufacturing, 4: 92–96. DOI:10.1504/IJNM.2009.028115
-
Kamli A and Bougouffa S, 2002. The dynamics of Jaynes-Cummings model in
the presence of photonic crystals. J. Mod. Opt. 49: 897–904. DOI:10.1080/09500340110109016
-
Loudon R. The quantum theory of light. Oxford, New York: Oxford Univ. Press
(2000).
-
Scully M and Zubairy S. Quantum optics Cambridge: Cambridge Univ. Press
(1997).
-
Meystre P and Sargent M. Elements of quantum optics. Berlin Heidelberg,
New York: Springer-Verlag (1999).
-
Senior J. Optical fibre communication principle and practices. Hemel Hempstead:
Prentice Hall (1992).
-
Banyard G, Bennett C and Babiker M, 2002 Enhancement of energy relaxation
rates near metal-coated dielectric cylinders. Opt. Commun. 207: 195–200.
DOI:10.1016/S0030-4018(02)01447-5
(c) Ukrainian Journal
of Physical Optics |