Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
The Jaynes–Cummings model dynamics for nano-optical systems
Download this article

S. Al-Awfi

Abstract. We investigate a two-level atom Jaynes–Cummings model and its dynamics for a nano-optical system. The optical system is assumed to be a hollow cylindrical waveguide with a circular cross section. Since the system is assumed to have nanoscale dimensions, the interaction process is strictly affected only by a single waveguide mode. The atom–mode coupling and the probability amplitudes are evaluated for different waveguide parameters as functions of the mode frequency

Keywords: nano-optical system, cylindrical waveguide, Jaynes–Cummings model

PACS: 03.75.Be, 37.30.+i
UDC: 535. 620.3. 539.182
Ukr. J. Phys. Opt. 13 125-134
doi: 10.3116/16091833/13/3/125/2012

Received: 17.03.2012

Анотація. В роботі досліджена дворівневий атом Джейнса-Каммінгса та його динаміка в нано-оптичній системі. Припускалось, що оптична система складається з порожніх циліндричних хвилеводів з круглим поперечним перерізом. Оскільки система вважається нано-розмірною, то на процес взаємодії впливає тільки одна хвилеводна мода. Оцінено атомно-модовий зв’язок і амплітуди ймовірності для різних параметрів хвилеводу, як функції частоти моди.

REFERENCES
 
  1. Andrews D. Structured light and its applications: An introduction to phase-structured beams and nanoscale optical forces. Burlington: MA Academic (2008). 
  2. Austin M and Chou S, 2004. Response to ‘Comment on “Fabrication of a molecular self-assembled monolayer diode using nano-imprint lithography”’ Nano Lett. 4: 535. DOI:10.1021/nl049818z
  3. Akiba E, Enoki H and Nakamura Y, 2004. Nano scale structure such as nano-size crystallites and defects can be found in conventional hydrogen absorbing alloys. Mater. Sci. Eng. B. 108: 60–66. DOI:10.1016/j.mseb.2003.10.104
  4. Wilk T, Webster S, Kuhn A and Rempe G, 2007. Single-atom single-photon quantum inter-face. Science. 317: 488–493. DOI:10.1126/science.1143835 PMid:17588899
  5. Al-Awfi S, 2011. Atomic decay rate enhancement inside a cylindrical quantum nanotube. Int. J. Nanomanuf. 4: 84–89. DOI:0.1504/IJNM.2009.028114
  6. Lembessis V, Al-Awfi S, Babiker M and Andrews D, 2011. Surface plasmon optical vortices and their influence on atoms. J. Opt. 13: 064002. DOI:10.1088/2040-8978/13/6/064002
  7. Marksteiner S, Savage C, Zoller P and Rolston S, 1994. Coherent atomic waveguides from hol-low optical fibers: quantized atomic motion. Phys Rev. A. 50: 2680–2690. DOI:10.1103/PhysRevA.50.2680 PMid:9911188
  8. Dowling J and Gea-Banacloche J, 1996. Evanescent light-wave atom mirrors, resonator, waveguides and traps. Adv. Atom. Mol. Opt. Phys. 37: 1–94. DOI:0.1016/S1049-250X(08)60098-1
  9. Al-Awfi S, Bowaaneh M, and Elabbar A, 2005. Theoretical analysis of channeling atom through a mono-mode hollow optical fiber. Indian J. Phys. 79(4): 385–390. 
  10. Bougouffa S and Al-Awfi S, 2009. The dynamics of the Jaynes–Cummings model in nanos-tructures. Physica Scripta. T134: 014011. DOI:10.1088/0031-8949/2009/T135/014011
  11. Al-Awfi S and Babiker M 1998. Atom dynamic between two conducting plates. Phys Rev. A. 58: 2272–2281. DOI:10.1103/PhysRevA.58.2274
  12. Al-Awfi S and Babiker M, 2000. Atomic motion in hollow sub-micron circular cylinder. Phys. Rev. A. 61: 033401. DOI:10.1103/PhysRevA.61.033401
  13. Jaynes E and Cummings F, 1963. Comparison of quantum and semiclassical theory with ap-pli-cations to beam maser. Proc. IEEE. 51: 89–99. DOI:10.1109/PROC.1963.1664
  14. Rippin M and Knight P, 1996. Modified spontaneous emission in cylindrical micro cavities wave guiding and distributed Bragg reflecting structures. J. Mod. Opt. 47: 807–832. DOI:10.1080/09500349608232784
  15. Al-Awfi S, Bougouffa S and Bawa’aneh M, 2009. Dipole emission rate inside a nano quan-tum dot resonator. Int. J. Nanomanufacturing, 4: 92–96. DOI:10.1504/IJNM.2009.028115
  16. Kamli A and Bougouffa S, 2002. The dynamics of Jaynes-Cummings model in the presence of photonic crystals. J. Mod. Opt. 49: 897–904. DOI:10.1080/09500340110109016
  17. Loudon R. The quantum theory of light. Oxford, New York: Oxford Univ. Press (2000). 
  18. Scully M and Zubairy S. Quantum optics Cambridge: Cambridge Univ. Press (1997). 
  19. Meystre P and Sargent M. Elements of quantum optics. Berlin Heidelberg, New York: Springer-Verlag (1999). 
  20. Senior J. Optical fibre communication principle and practices. Hemel Hempstead: Prentice Hall (1992). 
  21. Banyard G, Bennett C and Babiker M, 2002 Enhancement of energy relaxation rates near metal-coated dielectric cylinders. Opt. Commun. 207: 195–200. DOI:10.1016/S0030-4018(02)01447-5
(c) Ukrainian Journal of Physical Optics