Home
page
Other articles
in this issue |
Deposition-rate dependence
of optical properties of titanium nanolayers
Download this
article
Haleh Kangarlou and Maryam Motallebi Aghgonbad
Abstract. Titanium nanolayers with the thickness of 133 nm are
deposited on glass substrates at 300 K, using the deposition rates 0.1,
1.0, 1.5 and 2.0 A/s. The layers are produced with a physical vapour deposition
method under high-vacuum conditions. The optical reflectance and transmittance
of the layers thus produced are measured in the wavelength range of 300–1600
nm. The optical functions are calculated basing on the Kramers–Kronig
relation. The relation between the optical properties of the titanium nanolayers
and their nanostructure dependent on the deposition rates is investigated.
Keywords: Kramers–Kronig relation, effective
medium approximation, titanium, thin films, optical properties, deposition
rate
PACS: 78.20.Ci, 68.55.-a
UDC: 535.34, 535.312, 539.231, 620.3
Ukr. J. Phys. Opt.
13 4-11
doi: 10.3116/16091833/13/1/4/2012
Received: 14.06.2011
Final version: 25.10.2011
Анотація. Титанові наношари з
товщиною 133 нм нанесені на скляні підкладки
при 300 K, з швидкістю осадження 0,1, 1,0, 1,5 and
2,0 A/с. Шари були осаджені у високому вакуумі
методом напилення конденсацією з газової
фази. Оптичне відбивання виготовлених
шарів досліджене в спектральній області
300–1600 нм. Оптичні функції розраховані на
основі співвідношення Крамерса-Кронінга.
Досліджено співвідношення оптичних властивостей
титанових наношарів і їхньої наноструктури
в залежності від швидкості нанесення. |
|
REFERENCES
-
Xie H, Zeng X T and Yeo W K, 2008. Temperature dependent properties of
titanium oxide thin films by spectroscopic ellipsometry. SIMTech Techn.
Rep. 9: 29–32.
-
Bilenko D I, Sagaidachnyi A A, Galushka V V and Polyanskaya V P, 2010.
Determination of optical properties and thickness of nanolayers from the
angular dependences of reflectance. Techn. Phys. 55: 1478–1483.
DOI:10.1134/S1063784210100130
-
Song Y H, Cho S J, Jung C K, Bae I S and Boo J H, 2007. The structural
and mechanical properties of Ti films fabricated by using RF magnetron
sputtering. J. Korean Phys. Soc. 51: 1152–1155. DOI:10.3938/jkps.51.1152
-
Elhachi Y, Atmani F, Daimellah A and Hellal F, 2009. A morphological and
an electrochemical characterisation of a PVD titanium film deposited upon
an AISI 316L stainless steel. Arabian J. Sci. Eng. 34: 7–17.
-
Ortega D T, Rodil S E and Muhl S, 2008. Electrochemical behavior of titanium
thin films obtained by magnetron sputtering. Mater. Sci. 4: 15–19.
-
Cai K, Hu Y, Jandt K D and Wang Y, 2008. Surface modification of titanium
thin film with chitosan via electrostatic self-assembly technique and its
influence on osteoblast growth behavior. J. Mater. Sci: Mater. Med. 19:
499–506. DOI:10.1007/s10856-007-3184-5
PMid:17619966
-
Savaloni H and Kangarloo H, 2007. Influence of film thickness, substrate
temperature and nano-structural changes on the optical properties of UHV
deposited Ti thin films. J. Phys. D: Appl. Phys. 40: 203–214.
DOI:10.1088/0022-3727/40/1/016
-
Kangarlou H and Motallebi Aghgonbad M, Calculation of optical parameters
of titanium nano-layers with different deposition angles. Proc. World Congress
on Engineering-2011. vol. II, WCE 2011 (2011) London, U. K.
-
Johnson P B and Christy R W, 1974. Optical properties of transition metals:
Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B. 9: 5056–5070.
DOI:10.1103/PhysRevB.9.5056
-
Lynch D W, Olson C G and Weaver J H, 1975. Optical properties of Ti, Zr,
and Hf from 0.15 to 30 eV. Phys. Rev. B. 11: 3617–3624. DOI:10.1103/PhysRevB.11.3617
-
Movchan B A and Demchishin A V, 1969. Study of the structure and properties
of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide
and zirconium dioxide. Phys. Met. Metallogr. 28: 83–90.
-
Thornton J A, 1975. Influence of substrate temperature and deposition rate
on structure of thick sputtered Cu coatings. J. Vac. Sci. Technol. 12:
830–835. DOI:10.1116/1.568682
-
Savaloni H, Player M A, Gu E and Marr G V, 1992. Influence of substrate
temperature, deposition rate, surface texture and material on the structure
of uhv deposited erbium films. Vacuum. 43: 965–980. DOI:10.1016/0042-207X(92)90009-L
-
Arfken G B and Weber H J. Mathematical methods for physics. Harcourt Science
and Technology Company (2001). pp. 469–470.
-
Kangarloo H, Rafizadeh S and Salimi B, 2010. Optical properties of titanium
oxide nano layers. Proc. 3rd WSEAS Int. Conf. on Eng. Mechanics, Structures,
and Eng. Geology (EMESEG'10), World Scientific and Engineering Academy
and Society (WSEAS), Stevens Point, Wisconsin, USA (Latest Trends on Engineering
Mechanics, Structures, Engineering Geology). pp. 305–309.
-
Aspnes D E, Kinsbron E and Bacon D D, 1980. Optical properties of Au: sample
effects. Phys. Rev. B 21: 3290–3299. DOI:10.1103/PhysRevB.21.3290
(c) Ukrainian Journal
of Physical Optics |