Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Deposition-rate dependence of optical properties of titanium nanolayers
Download this article
Haleh Kangarlou and Maryam Motallebi Aghgonbad

Abstract. Titanium nanolayers with the thickness of 133 nm are deposited on glass substrates at 300 K, using the deposition rates 0.1, 1.0, 1.5 and 2.0 A/s. The layers are produced with a physical vapour deposition method under high-vacuum conditions. The optical reflectance and transmittance of the layers thus produced are measured in the wavelength range of 300–1600 nm. The optical functions are calculated basing on the Kramers–Kronig relation. The relation between the optical properties of the titanium nanolayers and their nanostructure dependent on the deposition rates is investigated.

Keywords: Kramers–Kronig relation, effective medium approximation, titanium, thin films, optical properties, deposition rate

PACS: 78.20.Ci, 68.55.-a
UDC: 535.34, 535.312, 539.231, 620.3
Ukr. J. Phys. Opt. 13 4-11 
doi: 10.3116/16091833/13/1/4/2012
Received: 14.06.2011
Final version: 25.10.2011

Анотація.  Титанові наношари з товщиною 133 нм нанесені на скляні підкладки при 300 K, з швидкістю осадження 0,1, 1,0, 1,5 and 2,0 A/с. Шари були осаджені у високому вакуумі методом напилення конденсацією з газової фази. Оптичне відбивання виготовлених шарів досліджене в спектральній області 300–1600 нм. Оптичні функції розраховані на основі співвідношення Крамерса-Кронінга. Досліджено співвідношення оптичних властивостей титанових наношарів і їхньої наноструктури в залежності від швидкості нанесення.

REFERENCES
  1. Xie H, Zeng X T and Yeo W K, 2008. Temperature dependent properties of titanium oxide thin films by spectroscopic ellipsometry. SIMTech Techn. Rep. 9: 29–32. 
  2. Bilenko D I, Sagaidachnyi A A, Galushka V V and Polyanskaya V P, 2010. Determination of optical properties and thickness of nanolayers from the angular dependences of reflectance. Techn. Phys. 55: 1478–1483. DOI:10.1134/S1063784210100130
  3. Song Y H, Cho S J, Jung C K, Bae I S and Boo J H, 2007. The structural and mechanical properties of Ti films fabricated by using RF magnetron sputtering. J. Korean Phys. Soc. 51: 1152–1155. DOI:10.3938/jkps.51.1152
  4. Elhachi Y, Atmani F, Daimellah A and Hellal F, 2009. A morphological and an electrochemical characterisation of a PVD titanium film deposited upon an AISI 316L stainless steel. Arabian J. Sci. Eng. 34: 7–17. 
  5. Ortega D T, Rodil S E and Muhl S, 2008. Electrochemical behavior of titanium thin films obtained by magnetron sputtering. Mater. Sci. 4: 15–19. 
  6. Cai K, Hu Y, Jandt K D and Wang Y, 2008. Surface modification of titanium thin film with chitosan via electrostatic self-assembly technique and its influence on osteoblast growth behavior. J. Mater. Sci: Mater. Med. 19: 499–506. DOI:10.1007/s10856-007-3184-5 PMid:17619966
  7. Savaloni H and Kangarloo H, 2007. Influence of film thickness, substrate temperature and nano-structural changes on the optical properties of UHV deposited Ti thin films. J. Phys. D: Appl. Phys. 40: 203–214. DOI:10.1088/0022-3727/40/1/016
  8. Kangarlou H and Motallebi Aghgonbad M, Calculation of optical parameters of titanium nano-layers with different deposition angles. Proc. World Congress on Engineering-2011. vol. II, WCE 2011 (2011) London, U. K. 
  9. Johnson P B and Christy R W, 1974. Optical properties of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B. 9: 5056–5070. DOI:10.1103/PhysRevB.9.5056
  10. Lynch D W, Olson C G and Weaver J H, 1975. Optical properties of Ti, Zr, and Hf from 0.15 to 30 eV. Phys. Rev. B. 11: 3617–3624. DOI:10.1103/PhysRevB.11.3617
  11. Movchan B A and Demchishin A V, 1969. Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide. Phys. Met. Metallogr. 28: 83–90. 
  12. Thornton J A, 1975. Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings. J. Vac. Sci. Technol. 12: 830–835. DOI:10.1116/1.568682
  13. Savaloni H, Player M A, Gu E and Marr G V, 1992. Influence of substrate temperature, deposition rate, surface texture and material on the structure of uhv deposited erbium films. Vacuum. 43: 965–980. DOI:10.1016/0042-207X(92)90009-L
  14. Arfken G B and Weber H J. Mathematical methods for physics. Harcourt Science and Technology Company (2001). pp. 469–470. 
  15. Kangarloo H, Rafizadeh S and Salimi B, 2010. Optical properties of titanium oxide nano layers. Proc. 3rd WSEAS Int. Conf. on Eng. Mechanics, Structures, and Eng. Geology (EMESEG'10), World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA (Latest Trends on Engineering Mechanics, Structures, Engineering Geology). pp. 305–309.
  16. Aspnes D E, Kinsbron E and Bacon D D, 1980. Optical properties of Au: sample effects. Phys. Rev. B 21: 3290–3299. DOI:10.1103/PhysRevB.21.3290
(c) Ukrainian Journal of Physical Optics