Home
page
Other articles
in this issue |
Explicit representation
of extended Jones matrix for oblique light propagation through a crystalline
slab
Download this
article
Nastishin Yu. A. and Nastyshyn S. Yu.
Abstract. We derive compact representation of an extended Jones
matrix (EJM) suggested by Lien [Lien A, 1997. Liq. Cryst. 22: 171–175]
for the case of oblique light incidence. Our representation of the EJM
is handy for analytical calculations and has the form of a general Jones
matrix, with nonzero imaginary parts of its off-diagonal elements. An analogy
between these two matrices is discussed. For a crystal slab with the optic
axis along the slab normal, our representation of the EJM reduces to a
form that yields the Jones vector identical to that obtained by the other
authors in the frame of paraxial approximation.
Keywords: Jones matrix formalism, extended
Jones matrix, oblique light incidence, linear birefringence, Jones birefringence
PACS: 42.25.Bs, 42.25.Ja, 42.25.Lc, 78.20.Bh
UDC: 535.3, 535.5
Ukr. J. Phys. Opt.
12 191-201
doi: 10.3116/16091833/12/4/191/2011
Received: 03.11.2011
Анотація. Отримано компактне представлення
узагальненої матриці Джонса (УМД), запропонованої
Ліеном [Lien A, 1997. Liq. Cryst., 22, 2: 171 – 175] для похилого
падіння світла. Наше представлення УМД
є зручним для аналітичних обчислень та
має форму загальної матриці Джонса з ненульовою
уявною частиною недіагональних елементів.
Обговорено аналогію між цими двома матрицями.
Для кристалічної пластинки з оптичною
віссю вздовж нормалі до пластинки наше
представлення УМД зводиться до форми, яка
приводить до вектора Джонса, отриманого
іншими авторами в параксіальному наближенні. |
|
REFERENCES
-
Jones R, 1941. A new calculus for the treatment of optical systems. I.
Description and discussion of the calculus. J. Opt. Soc. Amer. 31: 488–493.
doi:10.1364/JOSA.31.000488
-
Jones R, 1941. A new calculus for the treatment of optical systems. II.
Proof of three general equivalence theorems. J. Opt. Soc. Amer. 31: 493–499.
-
Jones R, 1941. A new calculus for the treatment of optical systems. III.
The Sohncke theory of optical activity. J. Opt. Soc. Amer. 31: 500–503.
doi:10.1364/JOSA.31.000500
-
Jones R, 1942. A new calculus for the treatment of optical systems. IV.
J. Opt. Soc. Amer. 32: 486–493. doi:10.1364/JOSA.32.000486
-
Jones R, 1947. A new calculus for the treatment of optical systems. V.
A more general formulation, and description of another calculus. J. Opt.
Soc. Amer. 37: 107–110. doi:10.1364/JOSA.37.000107
-
Jones R, 1947. A new calculus for the treatment of optical systems. VI.
Experimental determination of the matrix. J. Opt. Soc. Amer. 37: 110–112.
doi:10.1364/JOSA.37.000110
-
Jones R, 1948. A new calculus for the treatment of optical systems. VII.
Properties of the N-matrices. J. Opt. Soc. Amer. 38: 671–685. doi:10.1364/JOSA.38.000671
-
Yeh P, 1982. Extended Jones matrix method. J. Opt. Soc. Amer. 72: 507–513.
doi:10.1364/JOSA.72.000507
-
Gu C and Yeh P, 1993. Extended Jones matrix method. II. J. Opt. Soc. Amer.
A. 10: 966–973. doi:10.1364/JOSAA.10.000966
-
Lien A, 1990. Extended Jones matrix representation for the twisted nematic
liquid crystal display at oblique incidence. App. Phys. Lett. 57: 2767–2769.
doi:10.1063/1.103781
-
Lien A, 1997. A detailed derivation of extended Jones matrix representation
for twisted nematic liquid crystal displays. Liq. Cryst. 22: 171–175.
doi:10.1080/026782997209531
-
Yu F H and Kwok H S, 1999. Comparison of extended Jones matrices for twisted
nematic liquid crystal displays at oblique angles of incidence. J. Opt.
Soc. Amer. A. 16: 2772–2780. doi:10.1364/JOSAA.16.002772
-
Wöhler H, Hass G, Fritsch M and Mlynski D A, 1988. Faster 4x4 matrix method
for inhomogeneous uniaxial media. J. Opt. Soc. Amer. A. 5: 1554–1557.
doi:10.1364/JOSAA.5.001554
-
Berreman D, 1972. Optics in stratified and anisotropic media: 4x4 matrix
formulation. J. Opt. Soc. Amer. 62: 502–510. doi:10.1364/JOSA.62.000502
-
Berreman D, 1973. Optics in smoothly varying anisotropic planar structure:
application to liquid crystal twist cells. J. Opt. Soc. Amer. 63: 1374–1380.
doi:10.1364/JOSA.63.001374
-
Lien A and Chen C J, 1996. A new 2x2 matrix representation for twisted
nematic liquid crystal displays at oblique incidence. Jpn. J. Appl. Phys.
35: L1200–L1203. doi:10.1143/JJAP.35.L1200
-
Volyar A and Fadeyeva T, 2003. Generation of singular beams in uniaxial
crystals. Opt. Spectrosc. 94: 235–244. doi:10.1134/1.1555184
-
Nye J F and Berry M V, 1974. Dislocations in wave trains. Proc. Roy. Soc.
Lond. A 336: 165–190. doi:10.1098/rspa.1974.0012
-
Soskin M S and Vasnetsov M V, 2001. Singular beams. Progr. Opt. 42: 219–276.
doi:10.1016/S0079-6638(01)80018-4
-
Azzam R M A and Bashara N M, Ellipsometry and polarized light. Oxford:
North-Holland Publishing Company (1977).
-
Artega O and Canillas A, 2010. Analytic inversion of the Mueller-Jones
polarization matrices for homogeneous media. Opt. Lett. 35: 559–561.
doi:10.1364/OL.35.000559
PMid:20160817
-
Nye J F, Natural focusing and fine structure of light. Bristol and Philadelphia:
IOP Publishing (1999).
-
KiselevA D, Vovk R G, Egorov R I and Chigrinov V G, 2008. Polarization-resolved
angular patterns of nematic liquid crystal cells: Topological events driven
by incident light polarization. Phys. Rev. A. 78: 033815. doi:10.1103/PhysRevA.78.033815
-
Volyar A V, Shvedov V G and Fadeeva T A, 2002. Optical vortex generation
and Jones vector formalism. Opt. Spectrosc. 93: 267–272. doi:10.1134/1.1503758
-
Volyar A V, Fadeyeva T A and Egorov Yu A, 2002. Vectorial singularities
of Gaussian beams in uniaxial crystals: generation of optical vortices.
Pis’ma v Zhurn. Tekhn. Fiz. 28: 70–77.
-
Volyar A V and Fadeyeva T A, 2003. Optical vortices in crystals: birth,
annihilation and splitting of polarization umbilics. Pis’ma v Zhurn.
Tekhn. Fiz. 29: 58–64.
-
Volyar A, Shvedov V, Fadeyeva T, Desyatnikov A S, Neshev D N, Krolikowski
W and Kivshar Y S, 2006. Generation of single-charge optical vortices with
an uniaxial crystal. Opt. Express. 14: 3724–3729. doi:10.1364/OE.14.003724
PMid:19516519
(c) Ukrainian Journal
of Physical Optics |