Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
On the spin-to-orbit momentum conversion operated by electric field in optically active Bi12GeO20 crystals

Download this article

Vasylkiv Yu., Krupych O., Skab I. and Vlokh R.

Abstract. An optical conversion of spin angular momentum to orbital angular momentum (SAM-to-OAM) that appears in Bi12GeO20 crystals under the effect of conically shaped external electric field due to a Pockels effect has been studied both experimentally and theoretically. We have revealed the appearance of a doughnut mode and an optical vortex in the system consisting of a right-handed circular polariser, a sample subjected to conical electric field, and a left-handed circular analyser. It has been found that the presence of natural optical activity leads to notable decrease in the efficiency of the SAM-to-OAM conversion.

Keywords: optical vortex, natural optical activity, Pockels effect, Bi12GeO20 crystals

PACS: 78.20.Jq, 42.50.Tx, 78.20.Ek
UDC: 535.542, 535.56
Ukr. J. Phys. Opt. 12 171-179
doi: 10.3116/16091833/12/4/171/2011
Received:  07.10.2011

Анотація.  В роботі експериментально та теоретично досліджено перетворення оптичного спінового кутового моменту в орбітальний кутовий момент (СКМ-ОКМ), яке виникало в кристалах Bi12GeO20 під дією зовнішнього конічного електричного поля, завдяки ефекту Покельса. Виявлено виникнення „бубликової” моди і оптичного вихора в системі, яка складалась з право обертаючого циркулярного поляризатора, зразка підданого дії конічного електричного поля і ліво обертаючого циркулярного аналізатора. Виявлено, що присутність природної оптичної активності приводить до суттєвого зменшення ефективності СКМ-ОКМ перетворення.

REFERENCES
  1. DiVincenzo D P, 1995. Quantum computation. Science. 270: 255–261. doi:10.1126/science.270.5234.255
  2. Kilin S Ya, 1999. Quantum information. Sov. Phys. Uspekhi. 42: 435–452. doi:10.1070/PU1999v042n05ABEH000542
  3. Boschi D, Branca S, De Martini F, Hardy L and Popescu S, 1998. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80: 1121–1125. http://dx.doi.org/10.1103/PhysRevLett.80.1121
  4. Molina-Terriza G, Torres J P and Torner L, 2001. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett. 88: 013601. doi:10.1103/PhysRevLett.88.013601
  5. Skab I, Vasylkiv Yu, Savaryn V and Vlokh R, 2011. Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex. J. Opt. Soc. Amer. A. 28: 633–640. doi:10.1364/JOSAA.28.000633
  6. Skab I, Vasylkiv Yu, Zapeka B, Savaryn V and Vlokh R, 2011. Appearance of singularities of optical fields under torsion of crystals containing threefold symmetry axes. J. Opt. Soc. Amer. A. 28: 1331–1340. doi:10.1364/JOSAA.28.001331
  7. Vasylkiv Yu, Savaryn V, Smaga I, Skab I and Vlokh R, 2010. Determination of piezooptic coefficient π14 of LiNbO3 crystals under torsion loading. Ukr. J. Phys. Opt. 11: 156–164. doi:10.3116/16091833/11/3/156/2010
  8. Skab I, Vasylkiv Yu, Savaryn V and Vlokh R, 2010. Relations for optical indicatrix parameters in the conditions of crystal torsion. Ukr. J. Phys. Opt. 11: 193–240. doi:10.3116/16091833/11/4/193/2010
  9. Skab I, Vasylkiv Yu, Smaga I, Savaryn V and Vlokh R, 2011. On the method for measuring piezooptic coefficients π25 and π14 in the crystals belonging to point symmetry groups 3 and  . Ukr. J. Phys. Opt. 12: 28–35. doi:10.3116/16091833/12/1/28/2011
  10. Skab I, Vasylkiv Yu, Smaga I and Vlokh R, 2011. Spin-to-orbital momentum conversion via electrooptic Pockels effect in crystals. Phys. Rev. A 84: 043815. doi:10.1103/PhysRevA.84.043815
  11. Skab I P, Vasylkiv Yu V and Vlokh R O, 2011. On the possibility of electrooptic operation by orbital angular momentum of light beams via Pockels effect in crystals. Ukr. J. Phys. Opt. 12: 127–136. doi:10.3116/16091833/12/3/127/2011
  12. http://www.almazoptics.com/BGO-BSO-BTO.html
  13. Vogt H, Buse K, Hesse H and Kratzig E, 2001. Growth and holographic characterization of nonstoichiometric sillenite-type crystals. J. Appl. Phys. 90: 3167–3173. doi:10.1063/1.1400095
  14. Marrucci L, 2008. Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals. Mol. Cryst. Liq. Cryst. 488: 148–162. doi:10.1080/15421400802240524
  15. Karimi E, Piccirillo B, Nagali E, Marrucci L and Santamato E, 2009. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Appl. Phys. Lett. 94: 231124. doi:10.1063/1.3154549
  16. Piccirillo B, D’Ambrosio V, Slussarenko S, Marrucci L and Santamato E, 2010. Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate. Appl. Phys. Lett. 97: 241104. doi:10.1063/1.3527083
  17. Marrucci L, Manzo C and Paparo D, 2006. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96: 163905. doi:10.1103/PhysRevLett.96.163905 PMid:16712234
  18. Beth R A, 1936. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50: 115–125. doi:10.1103/PhysRev.50.115
  19. Vasylkiv Yu, Skab I and Vlokh R, 2011. Measurements of piezooptic coefficients π14 and π25 in Pb5Ge3O11 crystals using torsion induced optical vortex. Ukr. J. Phys. Opt. 12: 101–108. doi:10.3116/16091833/12/2/101/2011
(c) Ukrainian Journal of Physical Optics