Home
page
Other articles
in this issue |
Interferometric measurements
of piezooptic coefficients by means of four-point bending method
Download
this article
Krupych O., Savaryn V., Skab I. and Vlokh R.
Abstract. A new technique is suggested for determination of piezooptic
coefficients, which represents a combination of digital imaging laser interferometry
and a canonical four-point bending method. The design of interferometer,
measurement procedures, and data processing are described in detail. Potentials
of the present technique are tested on the example of widely used optical
glass BK7. High enough precision, together with unambiguity in determination
of the sign of both piezooptic (qm)
and photoelastic (pqm) coefficients, allow us to claim it to
be one of the most accurate and reliable techniques for the measurements
of
qm and pqm parameters.
Keywords: piezooptic effect, interferometry,
measuring techniques
PACS: 78.20.Hp, 42.25.Hz
UDC: 535.551, 535.417
Ukr. J. Phys. Opt.
12 150-159
doi: 10.3116/16091833/12/3/150/2011
Received: 14.07.2011
Анотація.
Анотація. В даній роботі запропоновано
новий метод вимірювання п’єзооптичних
коефіцієнтів, який є комбінацією цифрової
лазерної інтерферометрії зображення і
відомого методу чотирьох-точкового згину.
Детально описані конструкція інтерферометра,
процедура вимірювання і обробка результатів.
Можливості даного методу випробувані на
прикладі, широко вживаного оптичного скла
BK7. Висока точність разом з можливістю визначення
знаку, як п’єзооптичних (qm)
так і фотопружних (pqm) коефіцієнтів
дозволяє стверджувати, що запропонований
метод є найточнішим і надійним при визначенні
коефіцієнтів qm і
pqm.
. |
|
REFERENCES
-
Brewster D, 1816. On the communication of the structure of doubly-refracting
crystals to glass, murite of soda, flour spar, and other substances by
mechanical compression and dilation. Phil. Trans.: 156–178.
-
Grakh I I and Mozhanskaya A F, 1971. A type of mechanically anisotropic,
optically sensitive material. Mekhanika Polimerov. 5: 835–839.
-
Weber Y-J, 1995. Determination of internal strain by optical measurements.
Phys. Rev. B 51: 12209–12215. doi:10.1103/PhysRevB.51.12209
-
Narasimhamurty T S, Photoelastic and electrooptic properties of crystals.
New York: Plenum Press (1981).
-
Slezinger I I, Alievskaya A N and Mironov Yu V, 1985. Piezooptic devices.
Izmeritelnaya Tekhnika. 12: 17–19.
-
Billardon M and Badoz J, 1966. Birefringence modulator. C. R. Acad. Sci.
Ser. B. 262: 1672–1675.
-
Kemp J C, 1969. Piezo-optical birefringence modulators: new use for a long-known
effect. J. Opt. Soc. Amer. 59: 950–954.
-
Auld B A, Acoustic fields and waves in solids. Malabar, FL: Krieger (1990).
-
Balakshii V I, Parygin V N and Chirkov L E, Physical fundamentals of acoustooptics.
Moscow: Radio i Sviaz’ (1985).
-
Xu J and Stroud R, Acousto-optic devices: principles, design, and applications.
New York: Wiley (1992).
-
Shaskolskaya M P, Acoustic crystals. Moscow: Nauka (1982).
-
http://www.schott.com/advanced_optics/us/abbe_datasheets/schott_datasheet_all_us.pdf,
http://www.us.schott.com/advanced_optics/english/download/schott_tie-27_stress_in_optical_glass_july_2004_us.pdf
-
Pockels F, Lehrbuch der Kristallooptik. Leipzig: Teubner Berlin (1906).
-
Mytsyk B H, 2003. Methods for the studies of the piezo-optical effect in
crystals and the analysis of experimental data. Part I. Methodology for
the studies of piezo-optical effect. Ukr. J. Phys. Opt. 4: 1–26. doi:10.3116/16091833/4/1/1/2003
-
Ajmera P K, Huner B, Dutta A K and Hartley C S, 1988. Simulation and observation
of infrared piezobirefringent images in diametrically compressed semiconductor
disks. Appl. Opt. 27: 752–757. doi:10.1364/AO.27.000752PMid:20523677
-
Andrushchak A S, Bobitski Ya V, Kaidan M V, Mytsyk B G, Kityk A V, Schranz
W, 2005. Two-fold interferometric measurements of piezo-optic constants:
application to β-BaB2O4 crystals. Opt. Laser Technol. 37: 319–328. doi:10.1016/j.optlastec.2004.04.014
-
Mys O, Adamiv V, Martynyuk-Lototska I, Burak Ya and Vlokh R, 2007. Piezooptic
and acoustic properties of KLiB4O7 crystals. Ukr. J. Phys. Opt. 8: 138–142.
doi:10.3116/16091833/8/3/138/2007
-
Vasylkiv Yu, Kvasnyuk O, Krupych O, Mys O, Maksymuk O and Vlokh R, 2009.
Reconstruction of 3D stress fields basing on piezooptic experiment. Ukr.
J. Phys. Opt. 10: 22–37. doi:10.3116/16091833/10/1/22/2009
-
Frocht M M, Photoelasticity. London: J. Wiley and Sons (1965).
-
Vasylkiv Yu, Savaryn V, Smaga I, Skab I and Vokh R, 2010. Determination
of piezooptic coefficient π14 of LiNbO3 crystals under torsion loading.
Ukr. J. Phys. Opt. 11: 156-164. doi:10.3116/16091833/11/3/156/2010
-
Skab I, Smaga I, Savaryn V, Vasylkiv Yu and Vlokh R, 2011. Torsion method
for measuring piezooptic coefficients. Cryst. Res. & Technol. 46: 23–36.
doi:10.1002/crat.201000495
-
Timoshenko S P, Strength of materials. Moscow: Izdatelstvo NTL (1965).
-
http://edit.schott.com/advanced_optics/english/abbe_datasheets/schott_datasheet_n-bk7.pdf
-
Weber M J, Handbook of optical materials. Boca Raton, FL: CRC Press (2003).
-
Vasylkiv Yu, Savaryn V, Smaga I, Skab I and Vlokh R, 2011. On determination
of sign of the piezo-optic coefficients using torsion method. Appl. Opt.
50: 2512–2518. doi:10.1364/AO.50.002512
PMid:21673752
-
Dixon R W and Cohen M G, 1966. A new technique for measuring magnitudes
of photoelastic tensor and its application to lithium niobate. Appl. Phys.
Lett. 8: 205–207. doi:10.1063/1.1754556
-
Dixon R W, 1967. Photoelastic properties of selected materials and their
relevance for applications to acoustic light modulators and scanners. J.
Appl. Phys. 38: 5149–5152. doi:10.1063/1.1709293
(c) Ukrainian Journal
of Physical Optics |