Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
On the behaviour of Poynting vector in material media with weak optical activity
Download this article

Adamenko D., Kostyrko M. and Vlokh R.

Abstract. We have obtained phenomenological relation for the Poynting vector of electromagnetic wave propagating in crystals that possess a so-called weak optical activity. The appearance of transverse component of the Poynting vector and a transverse shift of the optical beam due to spin-orbit interaction are discussed.

Keywords: Poynting vector, weak optical activity

PACS:  78.20.Ek
UDC: 535.56
Ukr. J. Phys. Opt. 12 143-149
doi: 10.3116/16091833/12/3/143/2011
Received: 04.07.2011
 

Анотація. Одержано співвідношення для вектора Пойнтінґа електромагнітної хвилі, яка поширюється в кристалах зі слабкою оптичною активністю. У роботі обговорено появу поперечної компоненти вектора Пойнтінґа та поперечного зміщення оптичного променя внаслідок спін-орбітальної взаємодії.

REFERENCES
  1. Fedorov F I, 1959. On the theory of optical activity of crystals. 2. Crystals of cubic sys-tem and polar classes of medium-symmetry systems. Opt. Spektr. 6: 377–383.
  2. Ivchenko E I, Permogorov S A and Sel'kin A V, 1978. Reflection of light with a change of polarization state from the real crystal boundary. Sol. St. Commun. 28: 345–348. doi:10.1016/0038-1098(78)90438-6
  3. Ivchenko E L, Pevtsov A B and Sel'kin A V, 1981. Effects of optical activity on exciton luminescence of CdS. Sol. St. Commun. 39: 453–455. doi:10.1016/0038-1098(81)90638-4
  4. Zil'bershtein A Kh and Solov'ev L E, 1998. Reflection of light with the change of polarization state from real crystal boundary. Opt. Spectr.  84: 549–552.
  5. Lalov I J and Kojouharova N A, 2000. Reflection of electromagnetic waves at the boundary of optically active media. Bulgarian J. Phys. 27: 66–71.
  6. Zapeka B, Kostyrko M and Vlokh R, 2010. On the light refraction and polarisation in the presence of weak optical activity. Ukr. J. Phys. Opt. 11: 68–73 doi:10.3116/16091833/11/1/68/2010
  7. Zapeka B., Kostyrko M. and Vlokh R, 2010. Coexistence of ordinary gyration and weak optical activity in crystals: eigen waves of a new type. Ukr. J. Phys. Opt. 11: 119–125. doi:10.3116/16091833/11/2/119/2010
  8. Agranovich V M and Ginzburg V L, Crystal optics with spatial dispersion, and excitons. Berlin, New York: Springer-Verlag (1984).
  9. Agranovich V M and Ginzburg V L, 1962. Crystal optics with allowance for spatial dis-persion, exciton theory. Sov. Phys.: Uspekhi. 5: 323–346. doi:10.1070/PU1962v005n02ABEH003415
  10. Dooghin A V, Kundikova N D, Liberman V S and Zel'dovich B Ya, 1992. Optical Magnus effect. Phys. Rev. A. 45: 8204–8208. doi:10.1103/PhysRevA.45.8204PMid:9906914
  11. Hailu Luo, Shuangchun Wen, Weixing Shu and Dianyuan Fan, 2010. Role of transverse momentum currents in optical Magnus effect in the free space. Phys. Rev. A. 81: 053826.  doi:10.1103/PhysRevA.81.053826
  12. Bekshaev A, 2011. Improved theory for the polarization-dependent transverse shift of a paraxial light beam in free space. Ukr. J. Phys. Opt. 12: 10–18. doi:10.3116/16091833/12/1/10/2011
(c) Ukrainian Journal of Physical Optics