Home
page
Other articles
in this issue |
Nonparaxial singular
beams inside the focal region of a high numerical-aperture lens
Download
this article
V.G. Shvedov
Abstract. Key optical technologies, including lithography, data storage,
optical tweezers, microscopy, and ultrafast laser materials processing,
rely on strongly focused light beams. Such beams are often used to exploit
a vectorial nature of light and so detailed knowledge of the field structure
inside a tight focus becomes increasingly important. So far, theoretical
studies of intra-focal optical field components have been mainly concentrated
on spatially homogeneous states of light polarisation. In this work we
present a new development in the calculations of local polarisation structure
of tightly focused singular beams, including radially and azimuthally polarised
hollow beams.
Keywords: singular beam, vector optical field,
tight focus
PACS: 42.25.Ja, 42.60.Jf, 78.20.Bh
UDC: 535.51, 535.316
Ukr. J. Phys. Opt.
12 109-116
doi: 10.3116/16091833/12/3/109/2011
Received: 18.03.2011
Анотація Основні оптичні технології,
зокрема такі як літографія, запис даних,
використання оптичних пінцетів, мікроскопія
та надшвидка обробка лазерних матеріалів,
базуються на сильному фокусуванні світлових
променів. Використання цих променів здебільшого
базується на векторній природі світла,
тому детальна інформація про структуру
поля всередині фокуса є особливо важливою.
Однак теоретичне дослідження внутрішньо
фокусних оптичних компонент поля досі
переважно концентрувалося на просторово
однорідних станах поляризації світла.
У даній роботі представлено нові результати
розрахунку структури локальної поляризації
сильно сфокусованого сингулярного променя,
включаючи випадки радіально та азимутально
поляризованого пустотілого променя. |
|
REFERENCES
-
Wang H, Shi L, Lukyanchuk B, Sheppard C and Chong C, 2008. Creation of
a needle of longitudinally polarized light in vacuum using binary optics.
Nature Photonics. 2: 501–505. doi:10.1038/nphoton.2008.127
-
Hnatovsky C, Shvedov V, Krolikowski W and Rode A, 2011. Revealing local
field structure of focused ultrashort pulses. Phys. Rev. Lett. 106: 123901–05.
doi:10.1103/PhysRevLett.106.123901
-
Wang Z, Guo W, Li L, Luk'yanchuk B, Khan A, Liu Z, Chen Z and Hong Z, 2011.
Optical virtual imaging at 50 nm lateral resolution with a white-light
nanoscope. Nature Commun. 2: 218–222. doi:10.1038/ncomms1211
PMid:21364557
-
Helseth L, 2006. Smallest focal hole, Opt. Comm. 257: 1–8. doi:10.1016/j.optcom.2005.07.019
-
Zhan Q, 2009. Cylindrical vector beams: from mathematical concepts to applications.
Adv. Opt. Photonics. 1: 1–57. doi:10.1364/AOP.1.000001
-
Rhodes S, Nugent K and Roberts A, 2002. Precision measurement of the electromagnetic
fields in the focal region of a high-numerical-aperture lens using a tapered
fiber probe. J. Opt. Soc. Amer. A. 19: 1689–1693. doi:10.1364/JOSAA.19.001689
-
Wilson T, Juškaitis R and Higdon P, 1997. The imaging of dielectric point
scatterers in conventional and confocal polarisation microscopes. Opt.
Commun. 141: 298–313. doi:10.1016/S0030-4018(97)00226-5
-
Novotny L, Beversluis M, Youngworth K and Brown T, 2001. Longitudinal field
modes probed by single molecules. Phys. Rev. Lett. 86: 5251–5254. doi:10.1103/PhysRevLett.86.5251PMid:11384470
-
Bokor N, Iketaki Y, Watanabe T and Fujii M, 2005. Investigation of polarization
effects for high-numerical-aperture first-order Laguerre-Gaussian beams
by 2D scanning with a single fluorescent microbead. Opt. Express. 13: 10440–10447.
doi:10.1364/OPEX.13.010440
PMid:19503259
-
Dorn R, Quabis S and Leuchs G, 2003. Sharper focus for a radially polarized
light beam. Phys. Rev. Lett. 91: 233901–233905. doi:10.1103/PhysRevLett.91.233901
PMid:14683185
-
Torok P and Munro P, 2004. The use of Gauss-Laguerre vector beams in STED
microscopy. Opt. Express. 12: 3605–3617. doi:10.1364/OPEX.12.003605
-
Singh R, Senthilkumaran P and Singh K, 2008. Effect of primary spherical
aberration on high-numerical aperture of a Laguerre-Gaussian beam. J. Opt.
Soc. Amer. A. 25: 1307–1318. doi:10.1364/JOSAA.25.001307
-
Volyar A, Shvedov V and Fadeyeva T, 2001. The structure of a nonparaxial
Gaussian beam near the focus: II. Optical vortices. Opt. Spectrosc. 90
(1): 93–100. doi:10.1134/1.1343551
-
Youngworth K and Brown T, 2000. Focusing of high numerical aperture cylindrical
vector beams. Opt. Express. 7: 77–87. doi:10.1364/OE.7.000077
PMid:19404372
-
Richards B and Wolf E, 1959. Electromagnetic diffraction in the optical
systems. 2. Structure of the image field in an aplanatic system. Proc.
Roy. Soc. London, Ser. A. 253: 358–379.
doi:10.1098/rspa.1959.0200
-
Izdebskaya Y, Shvedov V and Volyar A, 2005. Focusing of wedge-generated
higher-order optical vortices. Opt. Lett. 30: 2530–2532. doi:10.1364/OL.30.002530
PMid:16208889
-
Fadeyeva T, Shvedov V, Izdebskaya Y, Volyar A, Brasselet E, Neshev D, Desyatnikov
A, Krolikowski W and Kivshar Y, 2010. Spatially engineered polarization
states and optical vortices in uniaxial crystals. Opt. Express. 30: 10848–10863.
-
Fadeyeva T, Shvedov V, Shostka N, Alexeyev C and Volyar A, 2010. Natural
shaping of the cylindrically polarized beams. Opt. Lett. 35: 3787–3789.
doi:10.1364/OL.35.003787
PMid:21081997
-
Shvedov V, Hnatovsky C, Krolikowski W and Rode A, 2010. Efficient beam
converter for the generation of high-power femtosecond vortices. Opt. Lett.
35: 2660–2662. doi:10.1364/OL.35.002660PMid:20680091
-
Hnatovsky C, Shvedov V, Krolikowski W and Rode A, 2010. Materials processing
with a tightly focused femtosecond laser vortex pulse. Opt. Lett. 35: 3417–3419.
doi:10.1364/OL.35.003417
PMid:20967085
-
Watanabe K, Horiguchi N and Kano H, 2007. Optimized measurement probe of
the localized surface plasmon microscope by using radially polarized illumination.
Appl. Opt. 46: 4985–4990. doi:10.1364/AO.46.004985
PMid:17676105
-
Biss D and Brown T, 2003. Polarization-vortex-driven second-harmonic generation.
Opt. Lett. 28: 923–925. doi:10.1364/OL.28.000923
PMid:12816247
-
Yew E and Sheppard C, 2007. Second harmonic generation polarization microscopy
with tightly focused linearly and radially polarized beams. Opt. Commun.
275: 453–457. doi:10.1016/j.optcom.2007.03.065
-
Hayazawa N, Saito Y and Kawata S, 2004. Detection and characterization
of longitudinal field for tipenhanced Raman spectroscopy. Appl. Phys. Lett.
85: 6239–6341. doi:10.1063/1.1839646
-
Zhan Q, 2004. Trapping metallic Rayleigh particles with radial polarization.
Opt. Express. 12: 3377–3382. doi:10.1364/OPEX.12.003377
PMid:19483862
(c) Ukrainian Journal
of Physical Optics |