Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Nonparaxial singular beams inside the focal region of a high numerical-aperture lens
Download this article

V.G. Shvedov 

Abstract. Key optical technologies, including lithography, data storage, optical tweezers, microscopy, and ultrafast laser materials processing, rely on strongly focused light beams. Such beams are often used to exploit a vectorial nature of light and so detailed knowledge of the field structure inside a tight focus becomes increasingly important. So far, theoretical studies of intra-focal optical field components have been mainly concentrated on spatially homogeneous states of light polarisation. In this work we present a new development in the calculations of local polarisation structure of tightly focused singular beams, including radially and azimuthally polarised hollow beams.

Keywords: singular beam, vector optical field, tight focus

PACS: 42.25.Ja, 42.60.Jf, 78.20.Bh
UDC: 535.51, 535.316
Ukr. J. Phys. Opt. 12 109-116 
doi: 10.3116/16091833/12/3/109/2011
Received: 18.03.2011

Анотація Основні оптичні технології, зокрема такі як літографія, запис даних, використання оптичних пінцетів, мікроскопія та надшвидка обробка лазерних матеріалів, базуються на сильному фокусуванні світлових променів. Використання цих променів здебільшого базується на векторній природі світла, тому детальна інформація про структуру поля всередині фокуса є особливо важливою. Однак теоретичне дослідження внутрішньо фокусних оптичних компонент поля досі переважно концентрувалося на просторово однорідних станах поляризації світла. У даній роботі представлено нові результати розрахунку структури локальної поляризації сильно сфокусованого сингулярного променя, включаючи випадки радіально та азимутально поляризованого пустотілого променя.

REFERENCES
  1. Wang H, Shi L, Lukyanchuk B, Sheppard C and Chong C, 2008. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nature Photonics. 2: 501–505. doi:10.1038/nphoton.2008.127
  2. Hnatovsky C, Shvedov V, Krolikowski W and Rode A, 2011. Revealing local field structure of focused ultrashort pulses. Phys. Rev. Lett. 106: 123901–05. doi:10.1103/PhysRevLett.106.123901
  3. Wang Z, Guo W, Li L, Luk'yanchuk B, Khan A, Liu Z, Chen Z and Hong Z, 2011. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nature Commun. 2: 218–222. doi:10.1038/ncomms1211 PMid:21364557
  4. Helseth L, 2006. Smallest focal hole, Opt. Comm. 257: 1–8. doi:10.1016/j.optcom.2005.07.019
  5. Zhan Q, 2009. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics. 1: 1–57. doi:10.1364/AOP.1.000001
  6. Rhodes S, Nugent K and Roberts A, 2002. Precision measurement of the electromagnetic fields in the focal region of a high-numerical-aperture lens using a tapered fiber probe. J. Opt. Soc. Amer. A. 19: 1689–1693. doi:10.1364/JOSAA.19.001689
  7. Wilson T, Juškaitis R and Higdon P, 1997. The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes. Opt. Commun. 141: 298–313. doi:10.1016/S0030-4018(97)00226-5
  8. Novotny L, Beversluis M, Youngworth K and Brown T, 2001. Longitudinal field modes probed by single molecules. Phys. Rev. Lett. 86: 5251–5254. doi:10.1103/PhysRevLett.86.5251PMid:11384470
  9. Bokor N, Iketaki Y, Watanabe T and Fujii M, 2005. Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead. Opt. Express. 13: 10440–10447. doi:10.1364/OPEX.13.010440 PMid:19503259
  10. Dorn R, Quabis S and Leuchs G, 2003. Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91: 233901–233905. doi:10.1103/PhysRevLett.91.233901 PMid:14683185
  11. Torok P and Munro P, 2004. The use of Gauss-Laguerre vector beams in STED microscopy. Opt. Express. 12: 3605–3617. doi:10.1364/OPEX.12.003605
  12. Singh R, Senthilkumaran P and Singh K, 2008. Effect of primary spherical aberration on high-numerical aperture of a Laguerre-Gaussian beam. J. Opt. Soc. Amer. A. 25: 1307–1318. doi:10.1364/JOSAA.25.001307
  13. Volyar A, Shvedov V and Fadeyeva T, 2001. The structure of a nonparaxial Gaussian beam near the focus: II. Optical vortices. Opt. Spectrosc. 90 (1): 93–100. doi:10.1134/1.1343551 
  14. Youngworth K and Brown T, 2000. Focusing of high numerical aperture cylindrical vector beams. Opt. Express. 7: 77–87. doi:10.1364/OE.7.000077 PMid:19404372
  15. Richards B and Wolf E, 1959. Electromagnetic diffraction in the optical systems. 2. Structure of the image field in an aplanatic system. Proc. Roy. Soc. London, Ser. A. 253: 358–379. doi:10.1098/rspa.1959.0200
  16. Izdebskaya Y, Shvedov V and Volyar A, 2005. Focusing of wedge-generated higher-order optical vortices. Opt. Lett. 30: 2530–2532. doi:10.1364/OL.30.002530 PMid:16208889
  17. Fadeyeva T, Shvedov V, Izdebskaya Y, Volyar A, Brasselet E, Neshev D, Desyatnikov A, Krolikowski W and Kivshar Y, 2010. Spatially engineered polarization states and optical vortices in uniaxial crystals. Opt. Express. 30: 10848–10863. 
  18. Fadeyeva T, Shvedov V, Shostka N, Alexeyev C and Volyar A, 2010. Natural shaping of the cylindrically polarized beams. Opt. Lett. 35: 3787–3789. doi:10.1364/OL.35.003787 PMid:21081997
  19. Shvedov V, Hnatovsky C, Krolikowski W and Rode A, 2010. Efficient beam converter for the generation of high-power femtosecond vortices. Opt. Lett. 35: 2660–2662. doi:10.1364/OL.35.002660PMid:20680091
  20. Hnatovsky C, Shvedov V, Krolikowski W and Rode A, 2010. Materials processing with a tightly focused femtosecond laser vortex pulse. Opt. Lett. 35: 3417–3419. doi:10.1364/OL.35.003417 PMid:20967085
  21. Watanabe K, Horiguchi N and Kano H, 2007. Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination. Appl. Opt. 46: 4985–4990. doi:10.1364/AO.46.004985 PMid:17676105
  22. Biss D and Brown T, 2003. Polarization-vortex-driven second-harmonic generation. Opt. Lett. 28: 923–925. doi:10.1364/OL.28.000923 PMid:12816247
  23. Yew E and Sheppard C, 2007. Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams. Opt. Commun. 275: 453–457. doi:10.1016/j.optcom.2007.03.065
  24. Hayazawa N, Saito Y and Kawata S, 2004. Detection and characterization of longitudinal field for tipenhanced Raman spectroscopy. Appl. Phys. Lett. 85: 6239–6341. doi:10.1063/1.1839646
  25. Zhan Q, 2004. Trapping metallic Rayleigh particles with radial polarization. Opt. Express. 12: 3377–3382. doi:10.1364/OPEX.12.003377 PMid:19483862
(c) Ukrainian Journal of Physical Optics