Home
page
Other articles
in this issue |
Supermodes of a double-ring
fibre array with symmetric coupling
Download
this article
Alexeyev C. N., Fadeyeva T. A., Boklag N. A.
and Yavorsky M. A.
We study the structure of supermodes of a double-ring array of identical
evanescently coupled single-mode fibres with the same coupling constant,
which describes interaction between the fibres. We ob-tain the expressions
for normal modes of such an array and the spectrum of their propagation
con-stants. We show that these supermodes are represented by symmetric
and antisymmetric combinations of supermodes of a single-ring circular
array.
Keywords: fibre array, circular array, double-ring
array
PACS: 42.81Q; 42.81Qb
UDC: 535.32
Ukr. J. Phys. Opt.
12 83-88 doi: 10.3116/16091833/12/2/83/2011
Received: 01.03.2011
Анотація. Досліджено структуру супермод
двокільцевого джгута ідентичних, радіаційно
зв’язаних одномодових волокон з однаковим
значенням константи зв’язку, що описує
взаємодію між волокнами. Отримано вираз
для нормальних мод цього джгута і спектр
констант поширення. Показано, що його супермоди
можна представити симетричною та антисиметричною
ком-бінацією супермод однокільцевого круглого
джгута.. |
|
REFERENCES
-
Jones A L, 1965. Coupling of optical fibers and scattering in fibers. J.
Opt. Soc. Amer. 55: 261–269. doi:10.1364/JOSA.55.000261
-
Szameit A, Pertsch T, Dreisow F, Nolte S and Tünnermann A, 2007. Light
evolution in arbitrary two-dimensional waveguide arrays. Phys. Rev. A.
75: 053814. doi:10.1103/PhysRevA.75.053814
-
Efremidis N K, Zhang P, Chen Z, Christodoulides D N, Rüter C E and Kip
D, 2010. Wave propa-gation in waveguide arrays with alternating positive
and negative couplings. Phys. Rev. A. 81: 053817. doi:10.1103/PhysRevA.81.053817
-
Patra K C, Srivastava S and Sharma E K, 2010. Power exchange in strongly
coupled diffused channel waveguide arrays: an analytical approach. J. Opt.
12: 08550. doi:10.1088/2040-8978/12/8/085501
-
Christodulides DN, Lederer F, Silberberg Y, 2003. Discretizing light behaviour
in linear and nonlinear waveguide lattices. Nature. 424: 817–823. doi:10.1038/nature01936PMid:12917695
-
Longhi S, 2009. Discrete diffraction and shape-invariant beams in optical
waveguide arrays. Phys. Rev. A. 79: 033847. doi:10.1103/PhysRevA.79.033847
-
Longhi S, 2009. Rectification of light refraction in curved waveguide arrays.
Opt. Lett. 34: 458–460. doi:10.1364/OL.34.000458
PMid:19373340
-
Kartashov Y V, Malomed B A, Vysloukh V A and Torner L, 2009. Stabilization
of multibeam necklace solitons in circular arrays with spatially modulated
nonlinearity. Phys. Rev. A. 80: 053816. doi:10.1103/PhysRevA.80.053816
-
Setzpfandt F, Sukhorukov A A, Neshev D N, Schiek R, Kivshar Y S and Pertsch
T, 2010. Phase transitions of nonlinear waves in quadratic waveguide arrays.
Phys. Rev. Lett. 105: 233905. doi:10.1103/PhysRevLett.105.233905
PMid:21231464
-
Longhi S, 2009. Polychromatic optical Bloch oscillations. Opt. Lett. 34:
2174–2176. doi:10.1364/OL.34.002174
PMid:19823539
-
Thompson C, Vemuri G and Agarwal G S, 2010. Anderson localization with
second quantized fields in a coupled array of waveguides. Phys. Rev. A.
82: 053805. doi:10.1103/PhysRevA.82.053805
-
Khomeriki R, 2010. Nonlinear Landau-Zener tunneling in coupled waveguide
arrays. Phys. Rev. A. 82: 013839. doi:10.1103/PhysRevA.82.013839
-
Wang X, Fu J, Liu X and Tong L-M, 2009. Subwavelength focusing by a micro/nanofiber
array. J. Opt. Soc. Amer. A. 26: 1827–1833. doi:10.1364/JOSAA.26.001827
-
Snyder A W, 1972. Coupled-mode theory for optical fibers. J. Opt. Soc.
Amer. 62: 1267–1277. doi:10.1364/JOSA.62.001267
-
Snyder A W and Love J D, Optical waveguide theory. London, New York: Chapman
and Hall (1985).
-
Longhi S, 2007. Light transfer control and diffraction management in circular
fibre waveguide arrays. J. Phys. B. 40: 4477. doi:10.1088/0953-4075/40/23/008
-
Kurti R S, Halterman K, Shori R K and Wardlaw M J, 2009. Discrete cylindrical
vector beam generation from an array of optical fibers. Opt. Express. 17:
13982–13988. doi:10.1364/OE.17.013982
PMid:19654806
-
Yu Y F, Fu Y H, Zhang X M, Liu A Q, Bourouina T, Mei T, Shen Z X and Tsai
D P, 2010. Pure angular momentum generator using a ring resonator. Opt.
Express. 18: 21651–21662. doi:10.1364/OE.18.021651
PMid:20941064
-
Alexeyev C N, Volyar A V and Yavorsky M A, 2009. Linear azimuthons in circular
fiber arrays and optical angular momentum of discrete optical vortices.
Phys. Rev. A. 80: 063821. doi:10.1103/PhysRevA.80.063821
-
Alexeyev C N, Alexeyev A N, Boklag N A and Yavorsky M A, 2009. Effect of
the spin-orbit interaction on polarization conversion in coupled waveguides.
J. Opt. A: Pure Appl. Opt. 11: 125404. doi:10.1088/1464-4258/11/12/125404
-
Alexeyev C N, Boklag N A and Yavorsky M A, 2010. Higher order modes of
coupled optical fibres. J. Opt. 12: 115704. doi:10.1088/2040-8978/12/11/115704
-
Davydov A S, Quantum mechanics. Oxford: Pergamon (1976).
-
Alexeyev C N, Boklag N A, Fadeyeva T A and Yavorsky M A, 2010. Tunnelling
of orbital angular momentum in parallel optical waveguides. J. Opt. 13
(in press).
(c) Ukrainian Journal
of Physical Optics |