Home
page
Other articles
in this issue |
Optical parameters
of CaF2, LiF, NaCl and KCl single crystals in the X-ray spectral range
Download
this article
Raransky M.D., Balazyuk V.N., Sergeev V.M.
and Melnyk M.I.
In this work, pendulum fringe and X-ray interferometry methods are used
for measuring Fhkl parameter, atomic dispersion amplitudes
fa,
dispersion corrections Df ', and single
decrements of refractive indices a for CaF2,
LiF, NaCl and KCl single crystals.
Keywords: single crystals, pendulum fringes,
X-ray interferometry, structural dispersion parameters
PACS: 41.50.+h
UDC: 548.4:548.734
Ukr. J. Phys. Opt.
12 45-53 doi: 10.3116/16091833/12/2/45/2011
Received: 25.01.2011
Анотація. В роботі використані методи
маятникових коливань та X - променевої інтер-ферометрії
для вимірювання параметра Fhkl
, дисперсії атомних амплітуд fa, дисперсійних
поправок Df ' і одиничних
декрементів показників заломлення a
монокристалів CaF2, LiF, NaCl і KCl. |
|
REFERENCES
-
Kittel Ch, Introduction to solid state physics (Translated from English,
Ed. Gusev A A), Moscow: Nauka (1978).
-
Aluker E D, Encyclopaedic dictionary “Solid state physics”. Vol. 2
Kiev: Naukova Dumka (1998).
-
James R, Optical principles of X-ray diffraction (Translated from English,
Ed. Iveronova V I), Moscow: Inostrannaya Literatura (1950).
-
Iveronova V I and Revkevich G P, Theory of X-ray dispersion. Moscow: Moscow
State University (1972).
-
Raransky M D and Struk Ya M, Diffraction optics of X-rays. Chernivtsi:
Ruta (2007).
-
Belomestnikh V N and Tesleva E P, 2004. Relationship of anharmonicity and
lat-eral deformation of quasi-isotropic polycrystalline solids. Theor.
J. Phys. 74: 140–142.
-
Sanditov D S, Mantatov V V and Sanditov B D, 2009. Anharmonicity of lattice
vibrations and transverse deformation of crystalline and vitreous solids.
Phys. of the Sol. State, 51: 998-1003 doi:
10.1134/S1063783409050187
-
Raransky M D, 1999. Normal and anomalous dispersion of X-ray waves. Sci.
Bull. of Chernivtsi Univ., Ser. Physics. 57: 5–11.
-
Raransky A M, Struk J M, Fodchuk I M and Raransky M D, 1993. Solution of
x-ray diffraction inverse problems in optics, Proc. SPIE 2108: 320-326
doi:10.1117/12.165401
-
Fodchuk I M and Raransky N D, 2003. Moire images simulation of strains
in X-ray interferometry. J. Phys. D: Appl. Phys. 36: 55–59. doi:10.1088/0022-3727/36/10A/311
-
Raransky M D, 2009. The phenomenon of pendular oscillations related to
X-waves in real single crystals. Sci. Bull. of Chernivtsi University, Ser.
Physics and Electronics. 438: 11–19.
-
Raransky M D, Pendulum and Moiré fringes in real crystals. Doctoral Thesis
in Physics and Mathematics. Chernivtsi (1987).
-
Mirkin L I, Handbook on X-ray diffraction analysis of polycrystals. Moscow:
FML (1961).
-
International tables for X-ray crystallography (Ed. Lonsdale K) Birmingham:
Kynoch Press (1972).
-
Doyle P A and Turner P S, 1968. Relativistic Hartree-Fock X-ray and electron
scat-tering factors. Acta Cryst. A. 24: 390–393. doi:10.1107/S0567739468000756
-
Zachariasen W H, 1968. Extinction in a lithium fluoride sphere. Acta Cryst.
A. 24: 324–332. doi:10.1107/S0567739468000562
-
Barnea Z, 1966. Hönl’s anomalous dispersion corrections for atomic scattering
factors. J. Phys. Soc. Japan. 21: 961–963. doi:10.1143/JPSJ.21.961
-
Cromer D T, 1965. Anomalous dispersion corrections computed from self-consistent
field relativistic Dirac-Slater wave functions. Acta Cryst. 18: 17–23.
doi:10.1107/S0365110X6500004X
(c) Ukrainian Journal
of Physical Optics |