Ukrainian Journal of Physical Optics 

Home page

Other articles 

in this issue
Optical parameters of CaF2, LiF, NaCl and KCl single crystals in the X-ray spectral range
Download this article

Raransky M.D., Balazyuk V.N., Sergeev V.M. and Melnyk M.I.

In this work, pendulum fringe and X-ray interferometry methods are used for measuring Fhkl parameter, atomic dispersion amplitudes fa, dispersion corrections Df ', and single decrements of refractive indices a for CaF2, LiF, NaCl and KCl single crystals.

Keywords: single crystals, pendulum fringes, X-ray interferometry, structural dispersion parameters

PACS: 41.50.+h
UDC: 548.4:548.734
Ukr. J. Phys. Opt. 12 45-53   doi: 10.3116/16091833/12/2/45/2011
Received: 25.01.2011

Анотація. В роботі використані методи маятникових коливань та X - променевої інтер-ферометрії для вимірювання параметра Fhkl , дисперсії атомних амплітуд fa, дисперсійних поправок Df '  і одиничних декрементів показників заломлення a монокристалів CaF2, LiF, NaCl і KCl.

  1. Kittel Ch, Introduction to solid state physics (Translated from English, Ed. Gusev A A), Moscow: Nauka (1978). 
  2. Aluker E D, Encyclopaedic dictionary “Solid state physics”. Vol. 2 Kiev: Naukova Dumka (1998). 
  3. James R, Optical principles of X-ray diffraction (Translated from English, Ed. Iveronova V I), Moscow: Inostrannaya Literatura (1950). 
  4. Iveronova V I and Revkevich G P, Theory of X-ray dispersion. Moscow: Moscow State University (1972). 
  5. Raransky M D and Struk Ya M, Diffraction optics of X-rays. Chernivtsi: Ruta (2007). 
  6. Belomestnikh V N and Tesleva E P, 2004. Relationship of anharmonicity and lat-eral deformation of quasi-isotropic polycrystalline solids. Theor. J. Phys. 74: 140–142. 
  7. Sanditov D S, Mantatov V V and Sanditov B D, 2009. Anharmonicity of lattice vibrations and transverse deformation of crystalline and vitreous solids. Phys. of the Sol. State, 51: 998-1003 doi: 10.1134/S1063783409050187
  8. Raransky M D, 1999. Normal and anomalous dispersion of X-ray waves. Sci. Bull. of Chernivtsi Univ., Ser. Physics. 57: 5–11. 
  9. Raransky A M, Struk J M, Fodchuk I M and Raransky M D, 1993. Solution of x-ray diffraction inverse problems in optics, Proc. SPIE 2108: 320-326 doi:10.1117/12.165401
  10. Fodchuk I M and Raransky N D, 2003. Moire images simulation of strains in X-ray interferometry. J. Phys. D: Appl. Phys. 36: 55–59. doi:10.1088/0022-3727/36/10A/311
  11. Raransky M D, 2009. The phenomenon of pendular oscillations related to X-waves in real single crystals. Sci. Bull. of Chernivtsi University, Ser. Physics and Electronics. 438: 11–19.
  12. Raransky M D, Pendulum and Moiré fringes in real crystals. Doctoral Thesis in Physics and Mathematics. Chernivtsi (1987). 
  13. Mirkin L I, Handbook on X-ray diffraction analysis of polycrystals. Moscow: FML (1961). 
  14. International tables for X-ray crystallography (Ed. Lonsdale K) Birmingham: Kynoch Press (1972). 
  15. Doyle P A and Turner P S, 1968. Relativistic Hartree-Fock X-ray and electron scat-tering factors. Acta Cryst. A. 24: 390–393. doi:10.1107/S0567739468000756
  16. Zachariasen W H, 1968. Extinction in a lithium fluoride sphere. Acta Cryst. A. 24: 324–332. doi:10.1107/S0567739468000562
  17. Barnea Z, 1966. Hönl’s anomalous dispersion corrections for atomic scattering factors. J. Phys. Soc. Japan. 21: 961–963. doi:10.1143/JPSJ.21.961
  18. Cromer D T, 1965. Anomalous dispersion corrections computed from self-consistent field relativistic Dirac-Slater wave functions. Acta Cryst. 18: 17–23. doi:10.1107/S0365110X6500004X
(c) Ukrainian Journal of Physical Optics