| Home
page 
 
 Other articles in this issue | 
REFERENCES
| Improved theory for
the polarization-dependent transverse shift of a paraxial light beam in
free space Download
this article
 Bekshaev A. 
 Spatial distribution of longitudinal field component of circularly polarised
optical beam depends on the polarization handedness, which causes a lateral
shift of “centre of gravity” of the beam when its polarization toggles.
We present generalised theory of this effect, which demonstrates relation
of the latter with angular irradiance moments of the beam. The theory is
applicable to arbitrary paraxial beams and shows that the lateral shift
is the same for the all cross sections of the beam.
 Keywords: paraxial beam, circular polarization,
transverse shift
 PACS: 42.25.–p, 42.25.Ja, 42.90.+m
UDC: 535.131, 535.47, 535.51
 Ukr. J. Phys. Opt.
12  10-18
 doi: 10.3116/16091833/12/1/10/2011
 Received: 10.11.2010
 Анотація. Просторовий розподіл поздовжньої
компоненти поля циркулярно поляризованого
оптичного променя залежить від знаку циркулярної
поляризації, що спричинює бокове зміщення
„гравітаційного центру” при перемиканні
поляризації. Запропонована узагальнена
теорія цього ефекту, яка демонструє зв’язок
вищезгаданого з кутовим моментом променя.
Теорія може бути застосована до будь-якого
параксіального променя та вказує на те,
що бокове зміщення є однаковим для всього
поперечного перетину променя. |  |  
(c) Ukrainian Journal
of Physical Optics
Bliokh K Y, Niv A, Kleiner V and Hasman E, 2008. Geometrodynamics of spinning
light. Nature Photon. 2: 748−753 doi:10.1038/nphoton.2008.229.
Liberman V S and Zel'dovich B Y, 1992. Spin-orbit interaction of a photon
in an inhomogeneous medium. Phys. Rev. A 46: 5199−5207 doi:10.1103/PhysRevA.46.5199PMid:9908741.
Fedoseyev V G, 1991 Lateral displacement of the light beam at reflection
and refraction. Opt. Spektrosk. 71: 829 834; [Opt. Spektrosk. 71: 992–997].
Onoda M, Murakami S and Nagaosa N, 2004. Hall effect of light. Phys. Rev.
Lett. 93: 083901. doi:10.1103/PhysRevLett.93.083901PMid:15447185
Bliokh K Y and Bliokh Y P, 2007. Polarization, transverse shifts, and angular
momentum conservation laws in partial reflection and refraction of an electromagnetic
wave packet. Phys. Rev. E 75: 066609. doi:10.1103/PhysRevE.75.066609
Bliokh K Y, 2009. Geometrodynamics of polarized light: Berry phase and
spin Hall effect in a gradient-index medium. J. Opt. A: Pure Appl. Opt.
11: 094009. doi:10.1088/1464-4258/11/9/094009
Marrucci L, Manzo C and Paparo D, 2006. Optical spin-to-orbital angular
momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett.
96: 163905. doi:10.1103/PhysRevLett.96.163905PMid:16712234
Fadeyeva T A, Rubass A F and Volyar A V, 2009. Transverse shift of a higher-order
paraxial vortex beam induced by a homogeneous anisotropic medium. Phys.
Rev. A 79: 0538115. doi:10.1103/PhysRevA.79.053815
Baranova N B, Savchenko A Y and Zel'dovich B Y, 1994. Transverse shift
of a focal spot due to switching of the sign of circular polarization.
JETP Lett. 59: 232−234.
Zel'dovich B Y, Kundikova N D and Rogacheva L F, 1994. Observed transverse
shift of a focal spot upon a change in the sign of circular polarization.
JETP Lett. 59: 766−769.
Volyar A, Fadeyeva T, 2000. Nonparaxial Gaussian beam: 2. The splitting
of the singular line and optical Magnus effect. Tech. Phys. Lett. 26: 89–96.
doi:10.1134/1.1307830
Zhao Y, Edgar J S, Jeffries G D M, McGloin D and Chiu D T, 2007. Spin-to-orbital
angular momentum conversion in a strongly focused optical beam. Phys. Rev.
Lett. 99: 073901. doi:10.1103/PhysRevLett.99.073901PMid:17930896
Aiello A, Lindlein N, Marquardt C and Leuchs G, 2009. Transverse angular
momentum and geometric spin Hall effect of light. Phys. Rev. Lett. 103:
100401. doi:10.1103/PhysRevLett.103.100401PMid:19792286
Chun-Fang Li, 2008. Representation theory for vector electromagnetic beams.
Phys. Rev. A 78: 063831. doi:10.1103/PhysRevA.78.063831
Haus H. A. Waves and fields in optoelectronics. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc. (1984).
Bliokh K Y, Alonso M A, Ostrovskaya E A and Aiello A, 2010. Angular momenta
and spin-orbit interaction of non-paraxial light in free space. ArXiv:1006.3876v2
[physics.optics].
Bekshaev A Ya and Soskin M S, 2007. Transverse energy flows in vectorial
fields of paraxial beams with singularities. Opt. Commun. 271: 332–348.
doi:10.1016/j.optcom.2006.10.057
Anan’ev Yu A and Bekshaev A Ya, 1994. Theory of intensity moments for
arbitrary light beams Opt. Spectr. 76: 558–568.
Mejias P M, Martinez-Herrero R, Piquero G and Movilla J M, 2002. Parametric
characterization of the spatial structure of non-uniformly polarized laser
beams. Prog. Quantum Electron. 26: 65–130. doi:10.1016/S0079-6727(02)00003-4
Bekshaev A Ya, 2009. Oblique section of a paraxial light beam: criteria
for azimuthal energy flow and orbital angular momentum. J. Opt. A: Pure
Appl. Opt. 11: 094003. doi:10.1088/1464-4258/11/9/094003
Nieminen T A, Stilgoe A B, Heckenberg N R and Rubinsztein-Dunlop H, 2008.
Angular momentum of a strongly focused Gaussian beam. J. Opt. A: Pure Appl.
Opt. 10: 115005. doi:10.1088/1464-4258/10/11/115005 |