Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Improved theory for the polarization-dependent transverse shift of a paraxial light beam in free space
Download this article

Bekshaev A. 

Spatial distribution of longitudinal field component of circularly polarised optical beam depends on the polarization handedness, which causes a lateral shift of “centre of gravity” of the beam when its polarization toggles. We present generalised theory of this effect, which demonstrates relation of the latter with angular irradiance moments of the beam. The theory is applicable to arbitrary paraxial beams and shows that the lateral shift is the same for the all cross sections of the beam.

Keywords: paraxial beam, circular polarization, transverse shift

PACS: 42.25.–p, 42.25.Ja, 42.90.+m
UDC: 535.131, 535.47, 535.51
Ukr. J. Phys. Opt. 12  10-18
doi: 10.3116/16091833/12/1/10/2011
Received: 10.11.2010

Анотація. Просторовий розподіл поздовжньої компоненти поля циркулярно поляризованого оптичного променя залежить від знаку циркулярної поляризації, що спричинює бокове зміщення „гравітаційного центру” при перемиканні поляризації. Запропонована узагальнена теорія цього ефекту, яка демонструє зв’язок вищезгаданого з кутовим моментом променя. Теорія може бути застосована до будь-якого параксіального променя та вказує на те, що бокове зміщення є однаковим для всього поперечного перетину променя.

REFERENCES
  1. Bliokh K Y, Niv A, Kleiner V and Hasman E, 2008. Geometrodynamics of spinning light. Nature Photon. 2: 748−753 doi:10.1038/nphoton.2008.229.
  2. Liberman V S and Zel'dovich B Y, 1992. Spin-orbit interaction of a photon in an inhomogeneous medium. Phys. Rev. A 46: 5199−5207 doi:10.1103/PhysRevA.46.5199PMid:9908741.
  3. Fedoseyev V G, 1991 Lateral displacement of the light beam at reflection and refraction. Opt. Spektrosk. 71: 829 834; [Opt. Spektrosk. 71: 992–997].
  4. Onoda M, Murakami S and Nagaosa N, 2004. Hall effect of light. Phys. Rev. Lett. 93: 083901. doi:10.1103/PhysRevLett.93.083901PMid:15447185
  5. Bliokh K Y and Bliokh Y P, 2007. Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet. Phys. Rev. E 75: 066609. doi:10.1103/PhysRevE.75.066609
  6. Bliokh K Y, 2009. Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium. J. Opt. A: Pure Appl. Opt. 11: 094009. doi:10.1088/1464-4258/11/9/094009
  7. Marrucci L, Manzo C and Paparo D, 2006. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96: 163905. doi:10.1103/PhysRevLett.96.163905PMid:16712234
  8. Fadeyeva T A, Rubass A F and Volyar A V, 2009. Transverse shift of a higher-order paraxial vortex beam induced by a homogeneous anisotropic medium. Phys. Rev. A 79: 0538115. doi:10.1103/PhysRevA.79.053815
  9. Baranova N B, Savchenko A Y and Zel'dovich B Y, 1994. Transverse shift of a focal spot due to switching of the sign of circular polarization. JETP Lett. 59: 232−234.
  10. Zel'dovich B Y, Kundikova N D and Rogacheva L F, 1994. Observed transverse shift of a focal spot upon a change in the sign of circular polarization. JETP Lett. 59: 766−769.
  11. Volyar A, Fadeyeva T, 2000. Nonparaxial Gaussian beam: 2. The splitting of the singular line and optical Magnus effect. Tech. Phys. Lett. 26: 89–96. doi:10.1134/1.1307830
  12. Zhao Y, Edgar J S, Jeffries G D M, McGloin D and Chiu D T, 2007. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 99: 073901. doi:10.1103/PhysRevLett.99.073901PMid:17930896
  13. Aiello A, Lindlein N, Marquardt C and Leuchs G, 2009. Transverse angular momentum and geometric spin Hall effect of light. Phys. Rev. Lett. 103: 100401. doi:10.1103/PhysRevLett.103.100401PMid:19792286
  14. Chun-Fang Li, 2008. Representation theory for vector electromagnetic beams. Phys. Rev. A 78: 063831. doi:10.1103/PhysRevA.78.063831
  15. Haus H. A. Waves and fields in optoelectronics. Englewood Cliffs, New Jersey: Prentice-Hall, Inc. (1984).
  16. Bliokh K Y, Alonso M A, Ostrovskaya E A and Aiello A, 2010. Angular momenta and spin-orbit interaction of non-paraxial light in free space. ArXiv:1006.3876v2 [physics.optics].
  17. Bekshaev A Ya and Soskin M S, 2007. Transverse energy flows in vectorial fields of paraxial beams with singularities. Opt. Commun. 271: 332–348. doi:10.1016/j.optcom.2006.10.057
  18. Anan’ev Yu A and Bekshaev A Ya, 1994. Theory of intensity moments for arbitrary light beams Opt. Spectr. 76: 558–568.
  19. Mejias P M, Martinez-Herrero R, Piquero G and Movilla J M, 2002. Parametric characterization of the spatial structure of non-uniformly polarized laser beams. Prog. Quantum Electron. 26: 65–130. doi:10.1016/S0079-6727(02)00003-4
  20. Bekshaev A Ya, 2009. Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum. J. Opt. A: Pure Appl. Opt. 11: 094003. doi:10.1088/1464-4258/11/9/094003
  21. Nieminen T A, Stilgoe A B, Heckenberg N R and Rubinsztein-Dunlop H, 2008. Angular momentum of a strongly focused Gaussian beam. J. Opt. A: Pure Appl. Opt. 10: 115005. doi:10.1088/1464-4258/10/11/115005
(c) Ukrainian Journal of Physical Optics