Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Optical properties and local structure of (As2S3)100-x(SbSI)x glasses
1Shpak A.P., 2Rubish V.M., 3Mykaylo O.A., 3Kaynts D.I., 2Guranich O.G., 2Rosul R.R.

1G. Kurdyumov Institute for Metal Physics, NASU, Kiev, Ukraine
2Uzhgorod Scientific-Technological Center of the Institute for Information Recording, NASU, Uzhgorod, Ukraine
3Uzhgorod National University, Uzhgorod, Ukraine

download full version

We report experimental results for the spectral dependences of the optical absorption edge in (As2S3)100-x(SbSI)x (0 ≤ x ≤ 90) glasses. Our studies have shown that increasing of antimony sulfoiodide (SbSI) content in the glass composition and the temperature increase lead to shift in the absorption edge towards long-wavelength range. The optical absorption edge Eg  positions are determined. The slope change observed for the absorption edge in the temperature range of Tg ÷ Tc is conditioned by generation of nanocrystals of antimony sulfoiodide in the glassy matrix.

Keywords: chalcogenide glasses, local structure, dielectric properties, ferroelectric glass ceramic

PACS: 42.25.Bs
UDC: 535.3
Ukr. J. Phys. Opt. 11 106-113   doi: 10.3116/16091833/11/2/106/2010
Received: 18.03.2010

Анотація. В даній роботі представлені результати експериментального дослідження спектрального положення краю поглинання стекол (As2S3)100-x(SbSI)x (0 ≤ x ≤ 90). Показано, що зростання концентрації сульфойодиду сурми (SbSI) у складі скла, як і зростання температури приводить до зміщення краю поглинання у довгохвильову область. Визначене положення краю поглинання Eg. Зміна нахилу кривої поглинання в області температур Tg ÷ Tc  зумовлюється утворенням нанокристалів сульфойодиду сурми в скляній матриці.

REFERENCES
  1. Fridkin V M, Ferroelectrics Semiconductors. New York: Consultants Bureau (1980) p. 220. 
  2. Rubish V M, Guranich O G and Leonov D S, 2005. Formation of the ferroelectric inclusions in the matrix of chalcogenide glass. Nanosystems, Nanomaterials, Nanotechnologies. 4: 911–920. 
  3. Rubish V M, 2001, Thermostimulated relaxation of SbSI glass structures. J. Optoelectron. Adv. Mater. 3: 941–944. 
  4. Rubish V M, 2007. Anomalous behaviour of dielectric permittivity of chalcogenide glasses in crystallization temperature range. Sensors Electronics and Microsystems Technologies. 1: 62–66. 
  5. Kaynts D I, Shpak A P, Rubish V M, Mykaylo O A, Guranich O G, Shtets P P and Guranich P P, 2008. Formation of ferroelectric nanostructures in (As2S3)100-x(SbSI)x glassy matrix. Ferroelectrics. 371: 28–33. doi:10.1080/00150190802385010
  6. Felts A. Amorphous and glassy inorganic materials. Moscow: Mir (1986) p. 558. 
  7. Guranich O G, 2006. Optical properties of the glasses of As-Sb-S-I systems. Uzhgorod: Mater. of Internat. Meeting “Clusters and nanostructured materials (CNM ‘2006)”. p. 329. 
  8. Rubish V M, Guranich O G and Rubish V V, 2007. Structure and properties of As40S60-xSex glasses. Photoelectronics. 16: 41–45. 
  9. Gutenev M S and Ivanova N I, 1987. Distribution of structural groups in quasi-binary glasses of (AXn)1-x (BXm)1-x systems (A, B = Ge, As, Sb; X = S, Se) from the data of dilatometry and magnetochemistry. Fiz. Khim. Stekla. 3: 454–458. 
  10. Shusta V S, Gerzanich E T, Slivka A G, Guranich O G and Bobela V A, 1992. The Urbach behaviour of the absorption edge of (PbxS1-y)2P2S6 ferroelectric crystals. Ukr. Fiz. Zhurn. 4: 561–565. 
  11. Rubish V M, Rigan M Yu, Gasinets S M, Gorina O V, Kaynts A I and Tovt V V, 2008. Obtaining and crystallization peculiarities of antimony sulphoiodide containing chalcogenide glasses. Ferroelectrics. 372: 87–92. doi:10.1080/00150190802381993
  12. Grigas J, Talik E and Lazauskas V, 2003. Splitting of the XPS in ferroelectric SbSI crys-tals. Ferroelectrics. 284: 147–160. doi:10.1080/00150190390204790
(c) Ukrainian Journal of Physical Optics