Home
page
Other articles
in this issue |
Biaxial crystal-based
optical tweezers
1Angelsky O.V., 1Maksimyak
A.P., 1Maksimyak P.P., 2Hanson S.G.
1Correlation
Optics Dept., Chernivtsi University, 2 Kotsyubinsky St., Chernivtsi 58012,
Ukraine
2DTU Fotonik,
Department of Photonics Engineering, Technical University of Denmark, Ørsteds
Plads 343, DK-2800 Kgs. Lyngby, Denmark
download full version
download 4.mov
(fig.4)
download 5.mov
(fig.5)
download 6.mov
(fig.6)
download 7.mov
(fig.7)
download 8.mov
(fig.8)
We suggest an optical tweezer setup based on an optically biaxial crystal.
To control movements of opaque particles, we use shifts. The results of
experimental studies are reported which are concerned with this laser tweezer
setup. We demonstrate a movement of microparticles of toner using a singular-optical
trap, rotation of particles due to orbital angular momentum of the field,
and converging or diverging of two different traps when changing transmission
plane of polariser at the input of our polarisation interferometer.
Keywords: optical tweezers, biaxial crystals,
shift polarisation interferometer, singular-optical trap
PACS: 42.25.Fx, 42.79.Ci, 02.40.Xx
UDC: 535.36, 535.41
Ukr. J. Phys. Opt.
11 99 - 106 doi: 10.3116/16091833/11/2/99/2010
Received: 22.02.2010
Анотація. Запропоновано схему оптичного
пінцета, що базується на використанні двовісних
кристалів. Для керування рухом непрозорих
частинок використано поляризаційний інтерферометр
зсуву. Наведено результати експериментального
дослідження можливостей цієї схеми пінцета.
За допомогою сингулярного-оптичної пастки
продемонстровано рух мікрочастинок тонера,
обертання частинок, зумовлене орбітальним
кутовим моментом поля та зведення двох
пасток при повороті лінійного поляризатора
на виході поляризаційного інтерферометра. |
|
REFERENCES
-
Ashkin A, Dziedzic J M, Bjorkholm J and Chu S, 1986. Observation of a single-beam
gradient force optical trap for dielectric particles. Opt. Lett. 11: 288–290.
doi:10.1364/OL.11.000288
PMid:19730608
-
Grier D G, 2003. A revolution in optical manipulation. Nature. 424: 810–816.
doi:10.1038/nature01935PMid:12917694
-
Neuman K C and Block S, 2004. Optical Trapping. Rev. Sci. Instr. 75: 2787–2809.
doi:10.1063/1.1785844PMid:16878180
PMCid:1523313
-
Gustavson T, Chikkatur A, Leanhardt A, Gorlitz A, Gupta S, Pritchard D
and Ketterle W, 2002. Transport of Bose-Einstein condensates with optical
tweezers. Phys. Rev. Lett. 88: 020401. doi:10.1103/PhysRevLett.88.020401PMid:11800998
-
Guck J, Ananthakrishnan R, Mahmood H, Moon T J, Cunningham C C and Käs
J, 2001. The optical stretcher: A novel laser tool to micromanipulate cells.
Biophys. J. 81: 767–784. doi:10.1016/S0006-3495(01)75740-2
-
McGloin D and Dholakia K, 2005. Bessel beams: diffraction in a new light.
Contemp. Phys. 46: 15–28. doi:10.1080/0010751042000275259
-
Liesener J, Reicherter M, Haist T and Tiziani H J, 2000. Multi-functional
optical tweezers using computergenerated holograms. Opt. Commun. 185: 77–82.
doi:10.1016/S0030-4018(00)00990-1
-
Dufresne E R, Spalding G C, Dearing M T, Sheets S A and Grier D G, 2001.
Computer-generated holographic optical tweezer arrays. Rev. Sci. Instr.
72: 1810–1816. doi:10.1063/1.1344176
-
Polin M, Ladavac K, Lee S.-H, Roichman Y and Grier D G, 2005. Optimized
holographic optical traps. Opt. Express. 13: 5831–5845. doi:10.1364/OPEX.13.005831
PMid:19498588
-
Eriksen R L, Mogensen P and Glückstad J, 2002. Multiple beam optical tweezers
generated by the generalized phase contrast method. Opt. Lett. 27: 267–269.
doi:10.1364/OL.27.000267PMid:18007775
-
McGloin D, Spalding G, Melville H, Sibbett W and Dholakia K, 2003. Applications
of spatial light modulators in atom optics. Opt. Express. 11: 158–166.
doi:10.1364/OE.11.000158PMid:19461719
-
Whyte G and Courtial J, 2005. Experimental demonstration of holographic
three-dimensional light shaping using a Gerchberg-Saxton algorithm. New
J. Phys. 7: 1–12. doi:10.1088/1367-2630/7/1/117
-
Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz
D, Erickson H M, Ananthakrishnan R, Mitchell D, Käs J, Ulvick S and Bilby
C, 2005. Optical deformability as an inherent cell marker for testing malignant
transformation and metastatic competence. Biophys. J. 88: 3689–3698.
doi:10.1529/biophysj.104.045476
PMid:15722433 PMCid:1305515
-
Garc’es-Ch’avez V, McGloin D, Summers M D, Fernandez-Nieves A, Spalding
G C, Cristobal G and Dholakia K, 2004. The reconstruction of optical angular
momentum after distortion in amplitude, phase and polarization. J. Opt.
A: Pure Appl. Opt. 6: 235–238. doi:10.1088/1464-4258/6/5/016
-
Nye J and Berry M V, 1974. Dislocations in wave trains. Proc. Roy. Soc.
London A. 336: 165–190. doi:10.1098/rspa.1974.0012
-
Nye J. Natural focusing and fine Structure of light: caustics and wave
dislocations. Inst. Phys. Publ.: Bristol (1999).
-
Freund I and Shvartsman N, 1994. Vortices in random wave fields: nearest
neighbor anticorrelations. Phys. Rev. Lett. 72: 1008–1011.doi:10.1103/PhysRevLett.72.1008PMid:10056594
-
Heckenberg N R, McDuff R, Smith C P and White A G, 1992. Generation of
optical phase singularities by computer-generated holograms. Opt. Lett.
17: 221–223. doi:10.1364/OL.17.000221PMid:19784282
-
Brandel R, Mokhun A, Mokhun I and Paliychuk I, 2002. Computer simulation
and physical modeling of self-converging optical traps. SPIE Proc. 4607:
59–65. doi:10.1117/12.455237
-
Born M. and Wolf E. Principles of optics. New York: Cambridge University
Press (1999).
-
Berry M, Bhandari R and Klein S, 1999. Black plastic sandwiches demonstrating
bi-axial anisotropy. Eur. J. Phys. 20: 1–14. doi:10.1088/0143-0807/20/1/001
-
Berry M and Dennis M, 2003. The optical singularities of birefringent dichroic
chiral crystals. Proc. Roy. Soc. A. 459: 1261–1292. doi:10.1098/rspa.2003.1155
-
Vlokh R, Volyar O, Mys O and Krupych O, 2003. Appearance of optical vortex
at conical refraction. Examples of NaNO2 and YFeO3 crystals. Ukr. J. Phys.
Opt. 4: 90–93. doi:10.3116/16091833/4/2/90/2003
-
Angelsky O V, Hanson S G, Maksimyak A P and Maksimyak P P, 2005. Interference
diagnostics of white-light vortices. Opt. Express. 13: 8179–8183. doi:10.1364/OPEX.13.008179PMid:19498847
-
Angelsky O V, Hanson S G, Maksimyak A P and Maksimyak P P, 2005. On the
feasibility for determining the amplitude zeroes in polychromatic fields.
Opt. Express. 13: 4396–4405. doi:10.1364/OPEX.13.004396PMid:19495355
-
Angelsky O V, Besaha R N and Mokhun I I, 1997. Appearance of wave front
dislocations under interference among beams with simple wave fronts. Optica
Applicata. 27: 273–278.
-
Angelsky O V and Maksimyak P P, 1992. Polarization-interference measurement
of phase-inhomogeneous objects. Appl. Opt. 31: 4417–4419. doi:10.1364/AO.31.004417
(c) Ukrainian Journal
of Physical Optics |