Home
page
Other articles
in this issue |
Influence length
of single-beam propagation in doped glass and polymer optical fibres
1Maryam Karimi, 2Faramarz
E. Seraji
1Physics
Group, Razi University, Kermanshah, Iran
2Optical
Communication Group, Iran Telecom Research Center, 14399 Tehran, Iran
download full version
For characterisation of doped optical fibres (DOFs) based on single-beam
propaga-tion, one requires a maximum DOF length along which a signal power
can propagate. In this work we have solved the rate equation for the single-beam
propagation in both lossy and lossless DOFs, introduced an influence length
as a maximum propagation length and then determined it analytically. With
the analytical results obtained, the main regularities for the influence
length have been simulated for the glass optical fibres doped with Ge/Al/Er
operating at arbitrary wavelengths under lossless and lossy conditions.
Also, the influence length has been determined for some kinds of co-dopants
present in both polymer and glass optical fibres. The influence length
thus defined may be useful in any measurements based on the single-beam
propagation in DOFs.
Keywords: influence length, doped optical fibres,
single-beam propagation, fibre lasers and amplifiers
PACS: 42.81._i, 42.25.Bs; 42.79._e; 42.65.Yj,
42.55.Wd
UDC: 535.3
Ukr. J. Phys. Opt.
11 90 - 98 doi: 10.3116/16091833/11/2/90/2010
Received: 14.01.2010
Анотація. Умовою охарактеризування
легованих оптичних однопроменевих волокон
(ЛОВ) є забезпечення їх максимальної довжини
вздовж якої поширюється сигнал. В даній
роботі ми розв’язали рівняння для поширення
променя у ЛОВ з втратами та без них, ввівши
ефективну довжину, як максимальну довжину
поширення, яка потім визначалась аналітично.
На основі аналітично отриманих результатів
були промодельовані основні закономірності
ефективної довжини для скляних оптичних
волокон, легованих Ge/Al/Er, які функціонували
на різних довжинах хвиль, за умови наявності
і відсутності втрат. Крім цього, ефективна
довжина була визначена для полімерних
і скляних волокон з певним типом домішок.
Таким чином, продемонстровано, що ефективна
довжина може бути корисною при однопроменевих
вимірюваннях у ЛОВ. |
|
REFERENCES
-
Guokui Liu and Bernard Jacquier, Eds. Spectroscopic properties of rare
earths in optical materials. New York, LLC: Springer-Verlag (2005).
-
Desurvire E, Erbium doped fiber amplifiers: principles and applications.
New York: Wiley (1994).
-
Barnes W L, Laming R I, Tarbox E J and Morkel P R, 1991. Absorption and
emission cross section of Er3+ doped silica fibers, IEEE J. Quant. Electron.
27: 1004–1010. doi:10.1109/3.83335
-
Karimi M and Seraji F E, Experimental technique to determine absorption
and emission cross Sec-tions of erbium doped fiber optics. Proc. Iranian
Phys. Conf. (2008), p. 62.
-
Karimi M and Seraji F E, A Novel model to determine fluorescence and loss
coefficient in doped optical fiber used in WDM transmission dystems. Proc.
Asia Opt. Fiber Com-mun. Optoelectron. Expo Conf. (2008), SuK7.
-
Karimi M and Seraji F E, A Proposed method to simultaneously measure doped
optical fibers pa-rameters, Proc. Iran. Phys. Conf., p.17.
-
Karimi M and Seraji F E, 2010. Experimental technique for simultaneous
measurement of absorp-tion-, emission cross-section, and background loss
coefficient in doped optical fibers. Appl. Phys. B. 98: 113–117. doi:10.1007/s00340-009-3760-0
-
Nguyen T N, Chartier T, Thual M, Besnard P, Provino L, Monteville A and
Traynor N, 2007. Simul-taneous measurement of anomalous group-velocity
dispersion and nonlinear coefficient in optical fibers using soliton-effect
compression. Opt. Commun. 278: 60–65. doi:10.1016/j.optcom.2007.05.036
-
Kobayashi T, Kuiki K, Imai N, Tamura T, Sasaki K and Koike Y, 1999. High
power polymer optical fiber lasers and amplifiers. Proc. SPIE Conf. Organic
Photon Mat. and Dev. 3623: 206.
-
Karimi M, Granpayeh N and Moravvej Farshi M K, 2004. Analysis and design
of a dye-doped polymer optical fiber amplifier. Appl. Phys. B. 78: 387–396.
doi:10.1007/s00340-003-1390-5
-
Desurvire E and Simpson J, 1991. Analysis of distributed erbium-doped fiber
amplifiers with fiber background loss. IEEE Photon. Technol. Lett. 3: 625–628.
doi:10.1109/68.87934
-
Adikan F R M, Noor A S M and Mahdi M A, 2004. Optimum pumping configuration
for L-band EDFA incorporating ASE pump source. IEEE Photon. Technol. Lett.
16: 1465–1467. doi:10.1109/LPT.2004.827848
-
Desurvire E, Zirngibl M, Presby H M and DiGiovanni D, 1991. Characterization
and modeling of amplified spontaneous emission in unsaturated erbium doped
fiber amplifi-ers. IEEE Photon. Technol. Lett. 3: 127–129. doi:10.1109/68.76863
-
Desurvire E and Simpson J, 1989. Amplification of spontaneous emission
in erbium-doped single-mode fibers. IEEE J. Lightwave Technol. 7: 835–845.
doi:10.1109/50.19124
-
Becker P C, Olsson N A and Simpson J R. Erbium doped fiber amplifiers:
fundamentals and tech-nology. London: Academic Press (1999).
-
Karimi M and Seraji Faramarz E, Mono-beam propagation in low and high loss
Er-doped optical fiber. Proc. 2nd Int. Conf. on Elect. Eng. Design and
Technol. ICEEDT’08, (2008).
-
Polyanin A D and Manzhirov A V. Handbook of mathematics for engineers and
scien-tists. Boca Raton–London: Chapman & Hall/CRC Press (2007).
(c) Ukrainian Journal
of Physical Optics |