Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Influence length of single-beam propagation in doped glass and polymer optical fibres 
1Maryam Karimi, 2Faramarz E. Seraji

1Physics Group, Razi University, Kermanshah, Iran
2Optical Communication Group, Iran Telecom Research Center, 14399 Tehran, Iran

download full version

For characterisation of doped optical fibres (DOFs) based on single-beam propaga-tion, one requires a maximum DOF length along which a signal power can propagate. In this work we have solved the rate equation for the single-beam propagation in both lossy and lossless DOFs, introduced an influence length as a maximum propagation length and then determined it analytically. With the analytical results obtained, the main regularities for the influence length have been simulated for the glass optical fibres doped with Ge/Al/Er operating at arbitrary wavelengths under lossless and lossy conditions. Also, the influence length has been determined for some kinds of co-dopants present in both polymer and glass optical fibres. The influence length thus defined may be useful in any measurements based on the single-beam propagation in DOFs.

Keywords: influence length, doped optical fibres, single-beam propagation, fibre lasers and amplifiers

PACS: 42.81._i, 42.25.Bs; 42.79._e; 42.65.Yj, 42.55.Wd
UDC: 535.3
Ukr. J. Phys. Opt. 11 90 - 98   doi: 10.3116/16091833/11/2/90/2010
Received: 14.01.2010

Анотація. Умовою охарактеризування легованих оптичних однопроменевих волокон (ЛОВ) є забезпечення їх максимальної довжини вздовж якої поширюється сигнал. В даній роботі ми розв’язали рівняння для поширення променя у ЛОВ з втратами та без них, ввівши ефективну довжину, як максимальну довжину поширення, яка потім визначалась аналітично. На основі аналітично отриманих результатів були промодельовані основні закономірності ефективної довжини для скляних оптичних волокон, легованих Ge/Al/Er, які функціонували на різних довжинах хвиль, за умови наявності і відсутності втрат. Крім цього, ефективна довжина була визначена для полімерних і скляних волокон з певним типом домішок. Таким чином, продемонстровано, що ефективна довжина може бути корисною при однопроменевих вимірюваннях у ЛОВ.

REFERENCES
  1. Guokui Liu and Bernard Jacquier, Eds. Spectroscopic properties of rare earths in optical materials. New York, LLC: Springer-Verlag (2005).
  2. Desurvire E, Erbium doped fiber amplifiers: principles and applications. New York: Wiley (1994).
  3. Barnes W L, Laming R I, Tarbox E J and Morkel P R, 1991. Absorption and emission cross section of Er3+ doped silica fibers, IEEE J. Quant. Electron. 27: 1004–1010. doi:10.1109/3.83335
  4. Karimi M and Seraji F E, Experimental technique to determine absorption and emission cross Sec-tions of erbium doped fiber optics. Proc. Iranian Phys. Conf. (2008), p. 62.
  5. Karimi M and Seraji F E, A Novel model to determine fluorescence and loss coefficient in doped optical fiber used in WDM transmission dystems. Proc. Asia Opt. Fiber Com-mun. Optoelectron. Expo Conf. (2008), SuK7.
  6. Karimi M and Seraji F E, A Proposed method to simultaneously measure doped optical fibers pa-rameters, Proc. Iran. Phys. Conf., p.17.
  7. Karimi M and Seraji F E, 2010. Experimental technique for simultaneous measurement of absorp-tion-, emission cross-section, and background loss coefficient in doped optical fibers. Appl. Phys. B. 98: 113–117. doi:10.1007/s00340-009-3760-0
  8. Nguyen T N, Chartier T, Thual M, Besnard P, Provino L, Monteville A and Traynor N, 2007. Simul-taneous measurement of anomalous group-velocity dispersion and nonlinear coefficient in optical fibers using soliton-effect compression. Opt. Commun. 278: 60–65. doi:10.1016/j.optcom.2007.05.036
  9. Kobayashi T, Kuiki K, Imai N, Tamura T, Sasaki K and Koike Y, 1999. High power polymer optical fiber lasers and amplifiers. Proc. SPIE Conf. Organic Photon Mat. and Dev. 3623: 206.
  10. Karimi M, Granpayeh N and Moravvej Farshi M K, 2004. Analysis and design of a dye-doped polymer optical fiber amplifier. Appl. Phys. B. 78: 387–396. doi:10.1007/s00340-003-1390-5
  11. Desurvire E and Simpson J, 1991. Analysis of distributed erbium-doped fiber amplifiers with fiber background loss. IEEE Photon. Technol. Lett. 3: 625–628. doi:10.1109/68.87934
  12. Adikan F R M, Noor A S M and Mahdi M A, 2004. Optimum pumping configuration for L-band EDFA incorporating ASE pump source. IEEE Photon. Technol. Lett. 16: 1465–1467. doi:10.1109/LPT.2004.827848
  13. Desurvire E, Zirngibl M, Presby H M and DiGiovanni D, 1991. Characterization and modeling of amplified spontaneous emission in unsaturated erbium doped fiber amplifi-ers. IEEE Photon. Technol. Lett. 3: 127–129. doi:10.1109/68.76863
  14. Desurvire E and Simpson J, 1989. Amplification of spontaneous emission in erbium-doped single-mode fibers. IEEE J. Lightwave Technol. 7: 835–845. doi:10.1109/50.19124
  15. Becker P C, Olsson N A and Simpson J R. Erbium doped fiber amplifiers: fundamentals and tech-nology. London: Academic Press (1999).
  16. Karimi M and Seraji Faramarz E, Mono-beam propagation in low and high loss Er-doped optical fiber. Proc. 2nd Int. Conf. on Elect. Eng. Design and Technol. ICEEDT’08, (2008).
  17. Polyanin A D and Manzhirov A V. Handbook of mathematics for engineers and scien-tists. Boca Raton–London: Chapman & Hall/CRC Press (2007).
(c) Ukrainian Journal of Physical Optics