Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Optical activity and critical exponent of the order parameter in lead germanate crystals. 
1. The case of diffused phase transition in Pb5Ge3O11 doped with Cu, Ba and Si ions
Adamenko D.I, Klymiv I.M, Vasylkiv Yu., Vlokh R.O.

Institute of Physical Optics, 23 Dragomanov St., 79005 Lviv, Ukraine

download full version
 

In the present paper an approach for evaluation of critical exponent of the order parameter at the diffused phase transition is developed on the basis of optical activity data. The temperature dependence of the optical activity in Pb5Ge3O11:Cu2+ crystals is experimentally studied. The critical exponents obtained for Pb5Ge3O11:Cu2+ and Pb5(Ge0.6Si0.4)3O11 crystals are equal to 0.40 and 0.35, respectively. On the basis of the critical exponents evaluated it is shown that the solid solutions (Pb(1-x)Bax)5Ge3O11  with x = 0.05 stay quite close to tricritical point on the x,T-phase diagram (beta=0.28 ). The critical exponent for the pure lead germanate is also clarified.

Keywords: critical exponent, diffused phase transitions, optical activity, lead germinate crystals

PACS: 33.55.Ad, 77.80.Bh, 64.60.Fr, 77.84Bw, 78.20Wc, 61.72.Ww
UDC: 535.56
Ukr. J. Phys. Opt. 10 182-193 
doi: 10.3116/16091833/10/4/182/2009

Received: 22.10.2009

Анотація. В даній роботі розвинуто підхід для отримання значення критичного індексу параметру порядку при розмитих фазових переходах на основі даних про температурну поведінку оптичної активності. Експериментально досліджена температурна поведінка оптичної активності в кристалах Pb5Ge3O11:Cu2+. Отримані значення критичних індексів для кристалів Pb5Ge3O11:Cu2+  і   Pb5(Ge0,6Si0,4)3O11, які дорівнюють 0,40 та 0,35, відповідно. На основі отриманих значень критичних індексів показано, що тверді розчини (Pb(1-x)Bax)5Ge3O11 з x = 0,05 знаходяться близько до трикритичної точки на x,T- фазовій діаграмі (beta=0.28). Уточнене, також, значення критичного індексу для чистих кристалів германату свинцю.

REFERENCES
  1. Vlokh O G, Spatial dispersion phenomena in parametric crystal optics. Lviv: Vyshcha Shkola (1984). 
  2. Vlokh O G and Vlokh R O, 2009. The electrogyration effect. Opt. Photonics News. 20: 34–39. doi:10.1364/OPN.20.4.000034
  3. Vlokh O G, 1987. Electrogyration properties of crystals. Ferroelectrics. 75: 119–137. 
  4. Vlokh O G, 1971. Electrogyration effect in quartz crystals, JETP Lett. 13: 118–121. 
  5. Vlokh O G, Lazko L A and Zheludev I S, 1975. Optical activity of Rochelle salt crystals. Kristallografiya. 20: 1056–1058. 
  6. Kobayashi J, Uesu Y and Takehara H, 1983. A new optical method and apparatus "HAUP" for measuring simultaneously optical activity and birefringence of crystals. II. Application to triglycine-sulphuric acid (NH2CH2CO2H)3.H2SO4. J. Appl. Cryst. 16: 212–219. doi:10.1107/S0021889883010274
  7. Kobayashi J, Takahashi T, Hosokawa T and Uesu Y, 1978. A new method for measuring the optical activity of crystals and the optical activity of KH2PO4. J. Appl. Phys. 49: 809–815. doi:10.1063/1.324663
  8. Vlokh O G, Klepatch N I and Shopa Y I, 1986. Study of electrogyration in KDP-type ferroelectrics. Ferroelectrics. 69: 267–274. 
  9. Weber H-J and Haussuhl S, 1976. Electrogyration effect in alums. Acta Cryst. A. 32: 892–895. doi:10.1107/S0567739476001770
  10. Vlokh O G, Lazko L A and Shopa Y I, 1981. Electrooptic and electrogyration properties of the solid solutions on the basis of lead germanate. Phys. Stat. Sol. (a). 65: 371–378. doi:10.1002/pssa.2210650143
  11. Vlokh O G, Lazko L A and Shopa Y I, 1980. Electrogyration and electro-optic properties of the solid solutions on the basis of lead germanate. J. Phys. Soc. Jap. Suppl. B. 49: 150–151. 
  12. Strukov B A, Sinyakov E V, Mayshchik E P, Minaeva K A, Monya V G and Vlokh O G 1977. Ultrasonic relaxation, smearing of phase transition and some physical properties of lead germanate crystals and solid solutions on their basis. Izv. AN USSR, Ser. Fiz. 41: 692–699.
  13. Vlokh O G, Sinyakov E V, Lazko L A and Monya V G 1978. Spontaneous and induced electrogyration in the [Pb1-xBix]5Ge3O11 crystals. Fiz. Tverd. Tela. 20: 2098–2100.
  14. Iwasaki H, Miyazawa S, Koizumi H, Sugii K and Niizeki N 1972. Ferroelectric and optical properties of Pb5Ge3O11 and its isomorphous compound Pb5Ge2SiO11. J. Appl. Phys. 43: 4907–4915. doi:10.1063/1.1661044
  15. Lazko L A, Monya V G, Sergatyuk V A and Shopa Y I 1982. The effect of impurities Li, Eu, La, Nd on the electrogyration properties of lead germanate crystals. Vestn. Lvov. Univ., Ser. Fiz. 16: 35–40.
  16. Adamenko D, Klymiv I, Duda V M, Vlokh R and Vlokh O, 2007. Electrically and magnetically induced optical rotation in Pb5Ge3O11:Cr crystals at the phase transition. 1. Electrogyration effect in Pb5Ge3O11:Cr. Ukr. J. Phys. Opt. 8: 42–53. doi:10.3116/16091833/8/1/42/2007
  17. Adamenko D, Klymiv I, Duda V M, Vlokh R and Vlokh O, 2008. Electrogyration and Faraday rotation in pure and Cr-doped lead germanate crystals. J. Phys.: Condens. Matter. 20: 075201. doi:10.1088/0953-8984/20/7/075201
  18. Ivanov N R, Levanyuk A P, Minyukov S A, Kroupa J and Fousek J, 1990. The critical temperature dependence of birefringence near the normal-incommensurate phase transition in Rb2ZnBr4. J. Phys.: Condens. Matter. 2: 5777–5786. doi:10.1088/0953-8984/2/26/015
  19. Kushnir O S, Shopa R Y, Vlokh R O, 2008. Optical studies of order parameter fluctuations in solid solutions based on lead germanate crystals. Ukr. J. Phys. Opt. 9: 169–181. doi:10.3116/16091833/9/3/169/2008
  20. Shopa Y I, Kushnir O S, Adamenko D, Shopa R Y, Dzyubanski V S, Vlokh R O and Vlokh O G, 2009. Electrogyration effect in lead germanate crystal family. 2. The case of crystals doped with Li, Eu, La, Nd and (Li, Bi). Ukr. J. Phys. Opt. 10: 71–81. doi:10.3116/16091833/10/2/71/2009
  21. Smolenskiy G.A. The physics of ferroelectric phenomenas. Leningrad: Nauka (1985).
  22. Shopa Y, Adamenko D, Vlokh R and Vlokh O, 2007. Electrogyration effect in lead germanate crystal family. 1. Electrogyration in the solid solutions based on lead germanate crystals. Ukr. J. Phys. Opt. 8: 197–208. doi: 10.3116/16091833/8/4/197/2007
(c) Ukrainian Journal of Physical Optics