Home
page
Other articles
in this issue |
Luminescence centres in dried
urine samples containing urate and oxalate salts
Bordun O.M., Drobchak O.Z.
Ivan Franko National University
of Lviv, 50 Dragomanov St., 79005 Lviv, Ukraine
download full version
Photoexcitation and luminescence spectra of urea and dried urine samples
are studied. The obtained spectra are deconvolved into elemental components
by means of Alentsev-Fock’s technique. The luminescence bands of the
urea and the dried urine samples with the maxima located near 2.2 and 2.64
eV are shown to be caused by n→π*-transition of non-bonding electrons
in heteroatoms O and N. The luminescence bands of the urea and the urine
with urate salts reveals the maximum near 3.64 eV, which is caused by n→σ*-transition
associated with redistribution of electron density in the carbonyl group.
The luminescence band with the maximum near 1.85 eV is linked to the luminescence
of urate salts in pathological urine.
Keywords: luminescence spectra, urine, urea,
urates, oxalates
PACS: 87.15.M
UDC: 535.37
Ukr. J. Phys. Opt.
10 124-133
doi: 10.3116/16091833/10/3/124/2009
Received: 03.03.2009
Анотація. Досліджено спектри фотозбудження
та люмінесценції сечовини та сухих залишків
урини. Методом Алєнцева-Фока спектри поділено
на елементарні складові. Смуги люмінесценції
сечовини та сухих залишків урини з максимумами
біля 2.2 та 2.64 еВ спричинені n→π* переходом
неподілених пар електронів гетероатомів
О та N відповідно. Смуги люмінесценції сечовини
та урини за наявності уратних солей з максимумом
біля 3.64 еВ пояснено n→σ*-переходом, пов’язаним
з перерозподілом електронної густини в
карбонільній групі. Смугу люмінесценції
з максимумом біля 1.85 еВ пов’язано з уратними
солями, наявними в патологічній урині. |
|
REFERENCES
-
Gijsbers G H M, Breederverd D, Gemert M J C van and Boon T A, 1986. Optical
properties of urine, blood plasma and pulmonary condensate of patients
with pulmonary form of tuberculosis. Lasers Life Sci. 1: 29–48.
-
Marijnissen J P A, Jansen H and Star W M, 1989. Reagent-free clinical analysis
and diagnostics. J. Urol. 142: 1351–1355.
-
Stavaren H J van, Beek J F, Keizer M and Star W M, 1995. Integrating sphere
effect in whole-bladder-wall photodynamic therapy. II. The influence of
urine at 458, 488, 514 and 630 nm optical irradiation. Phys. Med. Biol.
40: 1307–1315. doi:10.1088/0031-9155/40/8/001
-
Bilyy O I, Bordun O M and Petruh A V, Method for determination of type
of the urine salts. MPC G 01 No 33/493. Declarative patent 7880 of Ukraine
on useful model // Published 15/07/2005. Bull. No 7b, 2005.
-
Li Y-Q, Sui W Wu Ch and Yu L-J, 2001. Derivative matrix isopotential synchronous
fluorescence spectroscopy for the direct determination of 1-hydroxypyrene
as urinary biomarker of exposure to polycyclic aromatic hydrocarbons. Analytical
Sci. 17: 167–170. doi:10.2116/analsci.17.167
-
Chernitskiy E A and Slobozhanina E I. Spectral luminescent methods in medicine.
Minsk: Nauka i Tekhnika (1989).
-
Tyshchenko Yu A, Orlovskaya L V and Danilova V I, 1980. Electron absorption
spectra of carbamide and its nitrogen derivatives. Izv. Vuzov, Ser. Fiz.
3: 23–25.
-
Posudin Yu N. Laser fluorimetry of biological objects. Kiev: Vysshaya Shkola
(1985).
-
Golovina A P and Levshyn L V. Chemical luminescent analysis of inorganic
compounds. Moscow: Khimiya (1978).
-
Guminetsky S G, Gauka O R, Kokoschuk G I, Grigorishin P M and Kirsh N L,1999.
Absorption spectra of the main organic components of human urine in the
absence of proteins. Proc. SPIE. 3904: 579–589. doi:10.1117/12.370459
-
Fofonova R M, Orlovskaya L V and Kuznetsova R T, 1978. Electron absorption
spectra of carbamide and its nitrogen derivatives. Izv. Vuzov, Ser. Fiz.
1: 145–147.
-
Pulgarin J A M, Molina A A and Lopez P F, 1997. Direct determination of
amiloride in urine using isopotential flourimetry. Analyst. 122: 247–252.
doi:10.1039/a607219d
-
Figuera J M and Mendez V, 1971. Extended Hukel calculations of some ureas
and thioureas. An. Quim. Real. Soc. Esp. Fis. y Quim. 67/12: 1169–1177.
-
Mullen D and Hellner E, 1978. A simple refinement of density distributions
of bonding electrons. V. Bond electron density distribution in urea, CO(NH2)2,
at 123 K. Acta Crystallogr. B. 34/5: 1624–1627. doi:10.1107/S0567740878006172
-
Swaminathan S, Craven B M and McMullen R K, 1984. The crystal structure
and molecular thermal motion of urea at 12, 60 and 123 K from neutron diffraction.
Acta Crystallogr. B. 40: 300–304. doi:10.1107/S0108768184002135
-
Eliseev A A, Morozova Yu P and Kozynska V A, 2000. Application of computer
and informational technologies in medicine. Izv. Tomskogo Gosudarst. Univer.
269: 113–117.
-
Fock M V, 1972. Deconvolution of complex spectra into elemental bands according
to generalized Alentsev’s method. PIAS Transactions. 59: 3–24.
-
Owen T. Fundamentals of UV-visible spectroscopy. Waldronn: Hewlett-Packard
GmbH (1996).
-
Pisani C. Quantum-mechanical ab-initio calculation of the properties of
crystalline materials. Lecture Notes in Chemistry, 67, Heidenberg: Springer
Verlag (1996).
-
Sun H and Kung P W-C, 2004. An ab initio and force field study of the gas
and solid phases. J. Comp. Chem. 26/2: 169–174. doi:10.1002/jcc.20153
-
Karyakin A V. n-electrons of heteroatoms in hydrogen bond and luminescence.
Moscow: Nauka (1985).
-
Lebioda L, 1980. Crystal structure of human prostatic acid phosphatase.
Acta Crystallogr. B. 36/2: 271–275.
-
Petrun N M and Borchenko L I. Contents of chemical compounds in human tissues
and liquids. Moscow: Nauka (1964).
(c) Ukrainian Journal
of Physical Optics |