Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Luminescence centres in dried urine samples containing urate and oxalate salts
Bordun O.M., Drobchak O.Z.

Ivan Franko National University of Lviv, 50 Dragomanov St., 79005 Lviv, Ukraine

download full version

Photoexcitation and luminescence spectra of urea and dried urine samples are studied. The obtained spectra are deconvolved into elemental components by means of Alentsev-Fock’s technique. The luminescence bands of the urea and the dried urine samples with the maxima located near 2.2 and 2.64 eV are shown to be caused by n→π*-transition of non-bonding electrons in heteroatoms O and N. The luminescence bands of the urea and the urine with urate salts reveals the maximum near 3.64 eV, which is caused by n→σ*-transition associated with redistribution of electron density in the carbonyl group. The luminescence band with the maximum near 1.85 eV is linked to the luminescence of urate salts in pathological urine.

Keywords: luminescence spectra, urine, urea, urates, oxalates

PACS: 87.15.M
UDC: 535.37
Ukr. J. Phys. Opt. 10 124-133 
doi: 10.3116/16091833/10/3/124/2009
Received: 03.03.2009

Анотація. Досліджено спектри фотозбудження та люмінесценції сечовини та сухих залишків урини. Методом Алєнцева-Фока спектри поділено на елементарні складові. Смуги люмінесценції сечовини та сухих залишків урини з максимумами біля 2.2 та 2.64 еВ спричинені n→π* переходом неподілених пар електронів гетероатомів О та N відповідно. Смуги люмінесценції сечовини та урини за наявності уратних солей з максимумом біля 3.64 еВ пояснено n→σ*-переходом, пов’язаним з перерозподілом електронної густини в карбонільній групі. Смугу люмінесценції з максимумом біля 1.85 еВ пов’язано з уратними солями, наявними в патологічній урині.

REFERENCES
  1. Gijsbers G H M, Breederverd D, Gemert M J C van and Boon T A, 1986. Optical properties of urine, blood plasma and pulmonary condensate of patients with pulmonary form of tuberculosis. Lasers Life Sci. 1: 29–48.
  2. Marijnissen J P A, Jansen H and Star W M, 1989. Reagent-free clinical analysis and diagnostics. J. Urol. 142: 1351–1355.
  3. Stavaren H J van, Beek J F, Keizer M and Star W M, 1995. Integrating sphere effect in whole-bladder-wall photodynamic therapy. II. The influence of urine at 458, 488, 514 and 630 nm optical irradiation. Phys. Med. Biol. 40: 1307–1315. doi:10.1088/0031-9155/40/8/001
  4. Bilyy O I, Bordun O M and Petruh A V, Method for determination of type of the urine salts. MPC G 01 No 33/493. Declarative patent 7880 of Ukraine on useful model // Published 15/07/2005. Bull. No 7b, 2005.
  5. Li Y-Q, Sui W Wu Ch and Yu L-J, 2001. Derivative matrix isopotential synchronous fluorescence spectroscopy for the direct determination of 1-hydroxypyrene as urinary biomarker of exposure to polycyclic aromatic hydrocarbons. Analytical Sci. 17: 167–170. doi:10.2116/analsci.17.167
  6. Chernitskiy E A and Slobozhanina E I. Spectral luminescent methods in medicine. Minsk: Nauka i Tekhnika (1989).
  7. Tyshchenko Yu A, Orlovskaya L V and Danilova V I, 1980. Electron absorption spectra of carbamide and its nitrogen derivatives. Izv. Vuzov, Ser. Fiz. 3: 23–25.
  8. Posudin Yu N. Laser fluorimetry of biological objects. Kiev: Vysshaya Shkola (1985).
  9. Golovina A P and Levshyn L V. Chemical luminescent analysis of inorganic compounds. Moscow: Khimiya (1978).
  10. Guminetsky S G, Gauka O R, Kokoschuk G I, Grigorishin P M and Kirsh N L,1999. Absorption spectra of the main organic components of human urine in the absence of proteins. Proc. SPIE. 3904: 579–589. doi:10.1117/12.370459
  11. Fofonova R M, Orlovskaya L V and Kuznetsova R T, 1978. Electron absorption spectra of carbamide and its nitrogen derivatives. Izv. Vuzov, Ser. Fiz. 1: 145–147. 
  12. Pulgarin J A M, Molina A A and Lopez P F, 1997. Direct determination of amiloride in urine using isopotential flourimetry. Analyst. 122: 247–252. doi:10.1039/a607219d
  13. Figuera J M and Mendez V, 1971. Extended Hukel calculations of some ureas and thioureas. An. Quim. Real. Soc. Esp. Fis. y Quim. 67/12: 1169–1177.
  14. Mullen D and Hellner E, 1978. A simple refinement of density distributions of bonding electrons. V. Bond electron density distribution in urea, CO(NH2)2, at 123 K. Acta Crystallogr. B. 34/5: 1624–1627. doi:10.1107/S0567740878006172
  15. Swaminathan S, Craven B M and McMullen R K, 1984. The crystal structure and molecular thermal motion of urea at 12, 60 and 123 K from neutron diffraction. Acta Crystallogr. B. 40: 300–304. doi:10.1107/S0108768184002135
  16. Eliseev A A, Morozova Yu P and Kozynska V A, 2000. Application of computer and informational technologies in medicine. Izv. Tomskogo Gosudarst. Univer. 269: 113–117.
  17. Fock M V, 1972. Deconvolution of complex spectra into elemental bands according to generalized Alentsev’s method. PIAS Transactions. 59: 3–24.
  18. Owen T. Fundamentals of UV-visible spectroscopy. Waldronn: Hewlett-Packard GmbH (1996).
  19. Pisani C. Quantum-mechanical ab-initio calculation of the properties of crystalline materials. Lecture Notes in Chemistry, 67, Heidenberg: Springer Verlag (1996).
  20. Sun H and Kung P W-C, 2004. An ab initio and force field study of the gas and solid phases. J. Comp. Chem. 26/2: 169–174. doi:10.1002/jcc.20153
  21. Karyakin A V. n-electrons of heteroatoms in hydrogen bond and luminescence. Moscow: Nauka (1985).
  22. Lebioda L, 1980. Crystal structure of human prostatic acid phosphatase. Acta Crystallogr. B. 36/2: 271–275.
  23. Petrun N M and Borchenko L I. Contents of chemical compounds in human tissues and liquids. Moscow: Nauka (1964).
(c) Ukrainian Journal of Physical Optics