Home
page
Other articles
in this issue |
Detection of Vortex
Sign for Scalar Speckle Fields
Mokhun I., Galushko Yu.
Chernivtsi University, 2 Kotsyubinsky St., Chernivtsi
12, 58012, Ukraine
download full version
A technique is described for determining vortex sign in the scalar optical
fields (including statistical ones) under conditions when it is impossible
to use a regular reference beam. The elaborated approach is based on the
shift-interferometry technique. The optimal conditions for identifying
the vortices are formulated. The results of computer simulations and the
corresponding experimental confirmation of our theoretical findings are
presented.
Keywords: vortex, shift-interferometry, interference
forklets, topological charge
PACS: 42.50.Ct
UDC : 535.44
Ukr. J. Phys. Opt. 9 247-255
doi: 10.3116/16091833/9/4/247/2008
Received: 05.09.2008 |
|
REFERENCES
-
Baltes H.P. Inverse Source Problems in Optics. Berlin: Springer – Verlag,
(1978).
-
Freund I, Shvartsman N, Freilikher V, 1993. Optical dislocation networks
in highly random media, Opt. Comm. 101: 247-264. doi:10.1016/0030-4018(93)90375-F
-
Angelsky O, Brandel R, Mokhun I, 2002. Characteristics of scalar random
field and its vortex net-works. Recovery of the optical phase. SPIE Proc.
4607: 25-29.
doi:10.1117/12.455191
-
Freund I, Shvartsman N, 1994. Wave-field singularities: The sign principle,
Phys. Rev. A 50: 5164-5172.
doi:10.1103/PhysRevA.50.5164
-
Nye J F, F R S, Hajnal J V, Hannay J H, 1988. Phase saddles and dislocations
in two-dimensional waves such as the tides. Proc. R. Soc. Lond. A 417:
7-20.
doi:10.1098/rspa.1988.0047
-
Baranova N B, Zeldovich B Ya, 1981. Wave front dislocations and amplitude
zeroes. JETP. 80: 1789-1797.
-
Heckenberg N R, McDuff R, Smith C P, Rubinsztein-Dunlop H, Wegener M J,
1992. Laser beams with phase singularities. Opt. & Quant. Electr. 24:
S951-S962.
doi:10.1007/BF01588597
-
White A G, Smith C P, Heckenberg N R, Rubinsztein-Dunlop H, McDuff R, Weiss
C O, 1991. In-terferometric measurements of phase singularities in the
output of a visible laser. J. Mod. Opt. 38: 2531-2541.
doi:10.1080/09500349114552651
-
Basisty I V, Soskin M S, Vasnetsov M V, 1995. Optical wavefront dislocations
and their properties. Opt. Comm. 119: 604-612. doi:10.1016/0030-4018(95)00267-C
-
Freund I, 1998. ‘1001’ correlations in random wave fields. Waves Random
Media. 8: 119-158.
doi:10.1088/0959-7174/8/1/012
-
Freund I, Shvartsman N, 1994. Vortices in Random Wave Fields: Nearest Neibor
Anticorrelations. Phys. Rev. Lett. 72: 1008-1011. doi:10.1103/PhysRevLett.72.1008
-
Mokhun I, 1998. Amplitude zeroes and structure of statistical optical fields.
Correlation between the field’s intensity and phase. Proc. SPIE. 3573:
567-571.
doi:10.1117/12.324592
-
Shvartsman N, Freund I, 1995. Speckle spots ride phase saddles sidesaddle.
Opt. Comm. 117: 228-234.
doi:10.1016/0030-4018(95)00117-Q
-
Baranova N B, Zeldovich B Ya, Mamayev A V, Pilipetsky N F, Shkunov V V,
1982. Investigation of wavefront dislocations density in the light field.
JETP. 83: 1702-1710.
-
Greivenkamp J.E. and Bruning J.H. Phase Shifting Interferometers. in Optical
Shop Testing, D. Malacara, ed., 2nd ed., New York: Wiley (1992).
-
Born M. and Wolf E. Principles of Optics, 6th (corrected) ed. Oxford: Pergamon
Press (1987).
(c) Ukrainian Journal
of Physical Optics |