Ukrainian Journal of Physical Optics 

Home page

Other articles 

in this issue
Detection of Vortex Sign for Scalar Speckle Fields
Mokhun I., Galushko Yu.

Chernivtsi University, 2 Kotsyubinsky St., Chernivtsi 12, 58012, Ukraine

download full version

A technique is described for determining vortex sign in the scalar optical fields (including statistical ones) under conditions when it is impossible to use a regular reference beam. The elaborated approach is based on the shift-interferometry technique. The optimal conditions for identifying the vortices are formulated. The results of computer simulations and the corresponding experimental confirmation of our theoretical findings are presented.

Keywords: vortex, shift-interferometry, interference forklets, topological charge

PACS:  42.50.Ct
UDC : 535.44
Ukr. J. Phys. Opt. 9 247-255 
doi: 10.3116/16091833/9/4/247/2008
Received: 05.09.2008

  1. Baltes H.P. Inverse Source Problems in Optics. Berlin: Springer – Verlag, (1978). 
  2. Freund I, Shvartsman N, Freilikher V, 1993. Optical dislocation networks in highly random media, Opt. Comm. 101: 247-264. doi:10.1016/0030-4018(93)90375-F
  3. Angelsky O, Brandel R, Mokhun I, 2002. Characteristics of scalar random field and its vortex net-works. Recovery of the optical phase. SPIE Proc. 4607: 25-29. 

  4. doi:10.1117/12.455191
  5. Freund I, Shvartsman N, 1994. Wave-field singularities: The sign principle, Phys. Rev. A 50: 5164-5172. 

  6. doi:10.1103/PhysRevA.50.5164
  7. Nye J F, F R S, Hajnal J V, Hannay J H, 1988. Phase saddles and dislocations in two-dimensional waves such as the tides. Proc. R. Soc. Lond. A 417: 7-20. 

  8. doi:10.1098/rspa.1988.0047
  9. Baranova N B, Zeldovich B Ya, 1981. Wave front dislocations and amplitude zeroes. JETP. 80: 1789-1797. 
  10. Heckenberg N R, McDuff R, Smith C P, Rubinsztein-Dunlop H, Wegener M J, 1992. Laser beams with phase singularities. Opt. & Quant. Electr. 24: S951-S962. 

  11. doi:10.1007/BF01588597
  12. White A G, Smith C P, Heckenberg N R, Rubinsztein-Dunlop H, McDuff R, Weiss C O, 1991. In-terferometric measurements of phase singularities in the output of a visible laser. J. Mod. Opt. 38: 2531-2541. 

  13. doi:10.1080/09500349114552651
  14. Basisty I V, Soskin M S, Vasnetsov M V, 1995. Optical wavefront dislocations and their properties. Opt. Comm. 119: 604-612. doi:10.1016/0030-4018(95)00267-C
  15. Freund I, 1998. ‘1001’ correlations in random wave fields. Waves Random Media. 8: 119-158. 

  16. doi:10.1088/0959-7174/8/1/012
  17. Freund I, Shvartsman N, 1994. Vortices in Random Wave Fields: Nearest Neibor Anticorrelations. Phys. Rev. Lett. 72: 1008-1011. doi:10.1103/PhysRevLett.72.1008
  18. Mokhun I, 1998. Amplitude zeroes and structure of statistical optical fields. Correlation between the field’s intensity and phase. Proc. SPIE. 3573: 567-571. 

  19. doi:10.1117/12.324592
  20. Shvartsman N, Freund I, 1995. Speckle spots ride phase saddles sidesaddle. Opt. Comm. 117: 228-234. 

  21. doi:10.1016/0030-4018(95)00117-Q
  22. Baranova N B, Zeldovich B Ya, Mamayev A V, Pilipetsky N F, Shkunov V V, 1982. Investigation of wavefront dislocations density in the light field. JETP. 83: 1702-1710. 
  23. Greivenkamp J.E. and Bruning J.H. Phase Shifting Interferometers. in Optical Shop Testing, D. Malacara, ed., 2nd ed., New York: Wiley (1992). 
  24. Born M. and Wolf E. Principles of Optics, 6th (corrected) ed. Oxford: Pergamon Press (1987).
(c) Ukrainian Journal of Physical Optics