Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Effect of iron-group ions on the UV absorption of TiO2
1Kernazhitsky L., 1Shymanovska V., 1Naumov V., 2Chernyak V., 3Khalyavka T., 4Kshnyakin V.

1Institute of Physics of NAS, 46 Nauki Ave., 03650 Kyiv, Ukraine, 
2Kiev National University, 2/5 Acad. Glushkov Ave., 03122 Kyiv, Ukraine
3Institute for Sorption and Endoecology Problems of NAS, 31 Naumov Ave., 03142 Kyiv, Ukraine
4Sumy State Pedagogical University, 87 Romenska St., 40007 Sumy, Ukraine

download full version

The UV absorption spectra of polydisperse rutile (TiO2) doped by transition metal cations Cr3+, Cu2+, Co2+  and Fe2+ are investigated at room temperature. It is shown that the fundamental absorption edge of TiO2 is determined by the two mechanisms of electron transitions: one of them represents a direct forbidden transition and the other an indirect allowed one. The fundamental band gap for the pure rutile is determined to be (delta)E = 3.013 eV. The absorption of Fe-doped TiO2 reveals spectral redistribution near the fundamental edge, while the absorption of Co-doped TiO2 is strictly similar to that of the pure rutile. Photocatalytic decomposition of organic safranine by means of TiO2 is also studied. It is found that the pure TiO2 has higher photocatalytic activity in comparison with the doped compounds. We suppose that the impregnation cations act as traps at the initial stage of reaction but their function changes to that of recombination centres as the photocatalytic process develops.

Keywords: titanium dioxide (rutile), transition metal cations, UV absorption spectroscopy, fundamental band gap, photocatalytic activity

PACS: 61.72.Uj, 71.55.Eq, 78.40.Fy, 82.30.Lp
UDC : 535.341
Ukr. J. Phys. Opt. 9197-207 
doi: 10.3116/16091833/9/3/197/2008
Received: 06.05.2008

REFERENCES
 
  1. Mills A and Hunte S, 1997. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 108: 1–35. 

  2. doi: http://dx.doi.org/10.1016/S1010-6030(97)00118-4
  3. Diebold U, 2003. The surface science of titanium dioxide. Surf. Sci. Rep. 48: 53–229. 

  4. doi: http://dx.doi.org/10.1016/S0167-5729(02)00100-0
  5. Carp O, Huisman C L and Reller A, 2004. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32: 33–177. 

  6. doi: http://dx.doi.org/10.1016/j.progsolidstchem.2004.08.001
  7. Hermann J M, Disdier J and Pichat P, 1984. Effect of chromium doping on the electrical and cata-lytic properties of powder titania under UV and visible illumination. Chem. Phys. Lett. 108: 618–622. 

  8. doi: http://dx.doi.org/10.1016/0009-2614(84)85067-8
  9. Karakitsou K E and Verykios X E, 1993. Effect of altervalent cation doping of TiO2 on its perform-ance as a photocatalyst for water cleavage. J. Phys. Chem. 97: 1184–1189. 

  10. doi: http://dx.doi.org/10.1021/j100108a014
  11. Mu W, Herrmann J M and Pichat P, 1989. Room temperature photocatalyst oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2. Catal. Lett. 3: 73–84. 

  12. doi: http://dx.doi.org/10.1007/BF00765057
  13. Kernazhitsky L, Shymanovskaya V, Puchkovska G, Naumov V, Chernyak V, Prysiazhnevych I and Yukhimenko V, 2008. Influence of transition metal impurities on polydisperse rutile absorption spec-tra. J. Optoel. & Adv. Mater. (at press).
  14. Melnyk V, Shymanovska V, Puchkovska G, Bezrodna T and Klishevich G, 2005. Low-temperature luminescence of different TiO2 modifications. J. Mol. Struct. 573: 744–747.
  15. Pascual J, Camassel J and Mathieu H, 1978. Fine structure in the intrinsic absorption edge of TiO2. Phys. Rev. B. 18: 5606–5614. 

  16. doi: http://dx.doi.org/10.1103/PhysRevB.18.5606
  17. Tang H, Levy F, Berger H and Schmid P E, 1995. Urbach tail of anatase TiO2. Phys. Rev. B. 52: 7771–7774. 

  18. doi: http://dx.doi.org/10.1103/PhysRevB.52.7771
  19. Daude N, Gout C and Jouanin C, 1977. Electronic band structure of titanium diooxide. Phys. Rev. B. 15: 3229–3235. 

  20. doi: http://dx.doi.org/10.1103/PhysRevB.15.3229
  21. Vos K and Krusemeyer H J, 1975. Low temperature electroreflectance of TiO2. Solid State Com-mun. 15: 949–952. 

  22. doi: http://dx.doi.org/10.1016/0038-1098(74)90701-7
  23. Umebayashi T, Yamaki T, Itoh H and Asai K, 2002. Analysis of electronic structures of 3d transi-tion metals-doped TiO2 based on band calculations. J. Phys. Chem. Sol. 63: 1909–1920. 

  24. doi: http://dx.doi.org/10.1016/S0022-3697(02)00177-4
  25. Wang Y, Cheng H, Hao Y, Ma J, Li W and Cai S, 1999. Preparation, characterization and photo-electric behaviors of Fe(III) doped TiO2 nanoparticles. J. Mater. Sci. 34: 3721–3729. 

  26. doi: http://dx.doi.org/10.1023/A:1004611724069
  27. Tauc J, Optical Properties of Solids. Amsterdam: North-Holland (1970).
  28. Elliot R.J, 1957. Intensity of optical absorption by excitons. Phys. Rev. 108: 1384–1389. 

  29. doi: http://dx.doi.org/10.1103/PhysRev.108.1384
  30. Bak T, Nowotny J, Rekas M and Sorrell C C, 2003. Defect chemistry and semiconducting proper-ties of titanium dioxide: I. Intrinsic electronic equilibrium. J. Phys. Chem. Sol. 64: 1043–1056. 

  31. doi: http://dx.doi.org/10.1016/S0022-3697(02)00479-1
  32. Porto S P S, Fleury P A and Damen T C, 1967. Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2. Phys. Rev. 154: 522–526. 

  33. doi: http://dx.doi.org/10.1103/PhysRev.154.522
  34. Dow J D, 1972. Toward a unified theory of Urbach’s rule and exponential absorption edges. Phys. Rev. B 5: 594–610. 

  35. doi: http://dx.doi.org/10.1103/PhysRevB.5.594
  36. Cho K and Toyozawa Y, 1971. Exciton-phonon interaction and optical spectra: self-trapping, zero-phonon line and phonon sidebands. J. Phys. Soc. Jpn. 30: 1555–1574. 

  37. doi: http://dx.doi.org/10.1143/JPSJ.30.1555
  38. Tang H, Berger H, Schmid P E, Levy F and Burri G, 1993. Photoluminescence in TiO2 anatase single crystals. Solid State Commun. 87: 847–850. 

  39. doi: http://dx.doi.org/10.1016/0038-1098(93)90427-O
  40. Schrieber M and Toyozawa Y, 1982. Numerical experiments on the absorption lineshape of the exciton under lattice vibrations. I. The Overall Lineshape. J. Phys. Soc. Japan. 51: 1528–1536. 

  41. doi: http://dx.doi.org/10.1143/JPSJ.51.1528
  42. Ovenstone J, 2001. Preparation of novel titania photocatalysts with high activity. J. Mater. Sci. 36: 1325–1329. 

  43. doi: http://dx.doi.org/10.1023/A:1017587016915
  44. Linsebliger A L, Lu G and Yates J T, 1995. Photocatalysis on TiO2 surfaces: principles, mecha-nisms, and selected results. Chem. Rev. 95: 735–758. 

  45. doi: http://dx.doi.org/10.1021/cr00035a013
  46. Hofmann M R, Martin S T, Choi W and Bahnemann D W, 1995. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95: 69–96. 

  47. doi: http://dx.doi.org/10.1021/cr00033a004
  48. Zhou M, Yu J and Cheng B, 2006. Effect of Fe-doping on photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. J. Hazard. Mater. B. 137: 1838–1847. 

  49. doi: http://dx.doi.org/10.1016/j.jhazmat.2006.05.028
(c) Ukrainian Journal of Physical Optics