Home
page
Other articles
in this issue |
Effect of iron-group
ions on the UV absorption of TiO2
1Kernazhitsky L., 1Shymanovska
V., 1Naumov V., 2Chernyak V., 3Khalyavka
T., 4Kshnyakin V.
1Institute
of Physics of NAS, 46 Nauki Ave., 03650 Kyiv, Ukraine,
2Kiev
National University, 2/5 Acad. Glushkov Ave., 03122 Kyiv, Ukraine
3Institute
for Sorption and Endoecology Problems of NAS, 31 Naumov Ave., 03142 Kyiv,
Ukraine
4Sumy
State Pedagogical University, 87 Romenska St., 40007 Sumy, Ukraine
download full version
The UV absorption spectra of polydisperse rutile (TiO2) doped by transition
metal cations Cr3+, Cu2+, Co2+ and Fe2+ are investigated at room
temperature. It is shown that the fundamental absorption edge of TiO2 is
determined by the two mechanisms of electron transitions: one of them represents
a direct forbidden transition and the other an indirect allowed one. The
fundamental band gap for the pure rutile is determined to be (delta)E =
3.013 eV. The absorption of Fe-doped TiO2 reveals spectral redistribution
near the fundamental edge, while the absorption of Co-doped TiO2 is strictly
similar to that of the pure rutile. Photocatalytic decomposition of organic
safranine by means of TiO2 is also studied. It is found that the pure TiO2
has higher photocatalytic activity in comparison with the doped compounds.
We suppose that the impregnation cations act as traps at the initial stage
of reaction but their function changes to that of recombination centres
as the photocatalytic process develops.
Keywords: titanium dioxide (rutile), transition
metal cations, UV absorption spectroscopy, fundamental band gap, photocatalytic
activity
PACS: 61.72.Uj, 71.55.Eq, 78.40.Fy, 82.30.Lp
UDC : 535.341
Ukr. J. Phys. Opt.
9197-207
doi: 10.3116/16091833/9/3/197/2008
Received: 06.05.2008 |
|
REFERENCES
-
Mills A and Hunte S, 1997. An overview of semiconductor photocatalysis.
J. Photochem. Photobiol. A Chem. 108: 135.
doi: http://dx.doi.org/10.1016/S1010-6030(97)00118-4
-
Diebold U, 2003. The surface science of titanium dioxide. Surf. Sci. Rep.
48: 53229.
doi: http://dx.doi.org/10.1016/S0167-5729(02)00100-0
-
Carp O, Huisman C L and Reller A, 2004. Photoinduced reactivity of titanium
dioxide. Prog. Solid State Chem. 32: 33177.
doi: http://dx.doi.org/10.1016/j.progsolidstchem.2004.08.001
-
Hermann J M, Disdier J and Pichat P, 1984. Effect of chromium doping on
the electrical and cata-lytic properties of powder titania under UV and
visible illumination. Chem. Phys. Lett. 108: 618622.
doi: http://dx.doi.org/10.1016/0009-2614(84)85067-8
-
Karakitsou K E and Verykios X E, 1993. Effect of altervalent cation doping
of TiO2 on its perform-ance as a photocatalyst for water cleavage. J. Phys.
Chem. 97: 11841189.
doi: http://dx.doi.org/10.1021/j100108a014
-
Mu W, Herrmann J M and Pichat P, 1989. Room temperature photocatalyst oxidation
of liquid cyclohexane into cyclohexanone over neat and modified TiO2. Catal.
Lett. 3: 7384.
doi: http://dx.doi.org/10.1007/BF00765057
-
Kernazhitsky L, Shymanovskaya V, Puchkovska G, Naumov V, Chernyak V, Prysiazhnevych
I and Yukhimenko V, 2008. Influence of transition metal impurities on polydisperse
rutile absorption spec-tra. J. Optoel. & Adv. Mater. (at press).
-
Melnyk V, Shymanovska V, Puchkovska G, Bezrodna T and Klishevich G, 2005.
Low-temperature luminescence of different TiO2 modifications. J. Mol. Struct.
573: 744747.
-
Pascual J, Camassel J and Mathieu H, 1978. Fine structure in the intrinsic
absorption edge of TiO2. Phys. Rev. B. 18: 56065614.
doi: http://dx.doi.org/10.1103/PhysRevB.18.5606
-
Tang H, Levy F, Berger H and Schmid P E, 1995. Urbach tail of anatase TiO2.
Phys. Rev. B. 52: 77717774.
doi: http://dx.doi.org/10.1103/PhysRevB.52.7771
-
Daude N, Gout C and Jouanin C, 1977. Electronic band structure of titanium
diooxide. Phys. Rev. B. 15: 32293235.
doi: http://dx.doi.org/10.1103/PhysRevB.15.3229
-
Vos K and Krusemeyer H J, 1975. Low temperature electroreflectance of TiO2.
Solid State Com-mun. 15: 949952.
doi: http://dx.doi.org/10.1016/0038-1098(74)90701-7
-
Umebayashi T, Yamaki T, Itoh H and Asai K, 2002. Analysis of electronic
structures of 3d transi-tion metals-doped TiO2 based on band calculations.
J. Phys. Chem. Sol. 63: 19091920.
doi: http://dx.doi.org/10.1016/S0022-3697(02)00177-4
-
Wang Y, Cheng H, Hao Y, Ma J, Li W and Cai S, 1999. Preparation, characterization
and photo-electric behaviors of Fe(III) doped TiO2 nanoparticles. J. Mater.
Sci. 34: 37213729.
doi: http://dx.doi.org/10.1023/A:1004611724069
-
Tauc J, Optical Properties of Solids. Amsterdam: North-Holland (1970).
-
Elliot R.J, 1957. Intensity of optical absorption by excitons. Phys. Rev.
108: 13841389.
doi: http://dx.doi.org/10.1103/PhysRev.108.1384
-
Bak T, Nowotny J, Rekas M and Sorrell C C, 2003. Defect chemistry and semiconducting
proper-ties of titanium dioxide: I. Intrinsic electronic equilibrium. J.
Phys. Chem. Sol. 64: 10431056.
doi: http://dx.doi.org/10.1016/S0022-3697(02)00479-1
-
Porto S P S, Fleury P A and Damen T C, 1967. Raman spectra of TiO2, MgF2,
ZnF2, FeF2, and MnF2. Phys. Rev. 154: 522526.
doi: http://dx.doi.org/10.1103/PhysRev.154.522
-
Dow J D, 1972. Toward a unified theory of Urbachs rule and exponential
absorption edges. Phys. Rev. B 5: 594610.
doi: http://dx.doi.org/10.1103/PhysRevB.5.594
-
Cho K and Toyozawa Y, 1971. Exciton-phonon interaction and optical spectra:
self-trapping, zero-phonon line and phonon sidebands. J. Phys. Soc. Jpn.
30: 15551574.
doi: http://dx.doi.org/10.1143/JPSJ.30.1555
-
Tang H, Berger H, Schmid P E, Levy F and Burri G, 1993. Photoluminescence
in TiO2 anatase single crystals. Solid State Commun. 87: 847850.
doi: http://dx.doi.org/10.1016/0038-1098(93)90427-O
-
Schrieber M and Toyozawa Y, 1982. Numerical experiments on the absorption
lineshape of the exciton under lattice vibrations. I. The Overall Lineshape.
J. Phys. Soc. Japan. 51: 15281536.
doi: http://dx.doi.org/10.1143/JPSJ.51.1528
-
Ovenstone J, 2001. Preparation of novel titania photocatalysts with high
activity. J. Mater. Sci. 36: 13251329.
doi: http://dx.doi.org/10.1023/A:1017587016915
-
Linsebliger A L, Lu G and Yates J T, 1995. Photocatalysis on TiO2 surfaces:
principles, mecha-nisms, and selected results. Chem. Rev. 95: 735758.
doi: http://dx.doi.org/10.1021/cr00035a013
-
Hofmann M R, Martin S T, Choi W and Bahnemann D W, 1995. Environmental
applications of semiconductor photocatalysis. Chem. Rev. 95: 6996.
doi: http://dx.doi.org/10.1021/cr00033a004
-
Zhou M, Yu J and Cheng B, 2006. Effect of Fe-doping on photocatalytic activity
of mesoporous TiO2 powders prepared by an ultrasonic method. J. Hazard.
Mater. B. 137: 18381847.
doi: http://dx.doi.org/10.1016/j.jhazmat.2006.05.028
(c) Ukrainian Journal
of Physical Optics |