| Home
page 
 
 Other articles in this issue | 
REFERENCES
| Optical studies of
order parameter fluctuations in solid solutions based on lead germanate
crystals 1Kushnir O.S., 2Shopa
R.Y., 3Vlokh R.O.
 1Electronics
Department, Lviv National University, 107 Tarnavski St., 79017 Lviv, Ukraine
2College
of Natural Science at Lviv National University, 107 Tarnavski St., 79017
Lviv, Ukraine
 3Institute
of Physical Optics, 23 Dragomanov St., 79005 Lviv, Ukraine
 
 download full version
 The approach for interpreting fluctuations seen in optical activity
is suggested based on the first fluctuation correction to the Landau theory.
Quantitative analyses of the fluctuation effects for Si-, Ba- and Bi-containing
crystals of lead germanate family show applicability of the model. Critical
indices governing temperature behaviour of the order parameter of ferroelectric
phase transition are found for the crystals under study.
 Keywords: photonic crystals, photonic forbidden
gap, stop band, fluorescence spectra, photon density of states
 PACS: 77.80.Bh, 64.60.Fr, 77.84Bw, 78.20Wc,
61.72.Ww
UDC : 535.56, 536.77
 Ukr. J. Phys. Opt.
9 169-181
 doi: 10.3116/16091833/9/3/169/2008
 Received: 18.04.2008
 |  |  
(c) Ukrainian Journal
of Physical Optics
Iwasaki H, Miyazawa S, Koizumi H, Sugii K and Niizeki N, 1972. Ferroelectric
and optical properties of Pb5Ge3O11 and its isomorphous compound Pb5Ge2SiO11.
J. Appl. Phys. 43: 4907–4915.doi: http://dx.doi.org/10.1063/1.1661044
 
Smolensky G A, 1970. Physical phenomena in ferroelectrics with diffused
phase transitions. J. Phys. Soc. Japan, Suppl. 28: 26–37.
Vlokh O G, Sinyakov E V, Lazko L A, Shopa Ya I and Kreycherek A Ya, 1980.
Electro-gyration and dielectric properties of the lead germanate crystals
with silicon admixture. Fiz. Tverd. Tela. 22: 227–229.
Strukov B A, Sinyakov E V, Mayshchik E P, Minaeva K A, Monya V G and Vlokh
O G, 1977. Ultrasonic relaxation, smearing of phase transition and some
physical properties of lead germanate crystals and solid solutions on their
basis. Izv. AN USSR, Ser. Fiz. 41: 692–699.
Trubitsyn M P, Volnyanski M D, Kudzin A Yu and Kuzmenko T L, 1998. Studies
of local fluctuations near ferroelectric phase transition in Li2Ge7O15:Mn2+
crystals. Fiz. Tverd. Tela. 40: 111–113.
Trubitsyn M P, 1998. Critical behaviour of local order parameter in Li2Ge7O15.
Fiz. Tverd. Tela. 40: 114–115.
Konak C, Fousek J and Kursten H D, 1978. Induced and spontaneous optical
activity in Pb5Ge3O11 single crystals. Ferroelectrics. 21: 347–348.doi: http://dx.doi.org/10.1080/00150197808237260
 
Vlokh O G, Lazko L A and ShopaY I, 1980. Electrogyration and electro-optic
properties of the solid solutions on the basis of lead germanate. J. Phys.
Soc. Japan, Suppl. B. 49: 150–151.
Vlokh O G, Lazko L A and Shopa Y I, 1981. Electrooptic and electrogyration
properties of the solid solutions on the basis of lead germanate. Phys.
Stat. Solidi (a). 65: 371–378.doi: http://dx.doi.org/10.1002/pssa.2210650143
 
Vlokh O G. Spatial dispersion phenomena in parametric crystal optics. Lviv:
Vyshcha Shkola (1984).
Adamenko D, Klymiv I, Duda V M, Vlokh R and Vlokh O, 2007. Electrically
and magnetically induced optical rotation in Pb5Ge3O11:Cr3+ crystals at
the phase transition. 1. Electrogyration effect in Pb5Ge3O11:Cr3+ crystals.
Ukr. J. Phys. Opt. 8: 42–53.doi: http://dx.doi.org/10.3116/16091833/8/1/42/2007
 
Shopa Y, Adamenko D, Vlokh R and Vlokh O, 2007. Electrogyration effect
in lead germanate crystal family. 1. Electrogyration in solid solutions
on the basis of lead germanate crystals. Ukr. J. Phys. Opt. 8: 197–208.doi: http://dx.doi.org/10.3116/16091833/8/4/197/2007
 
Adamenko D, Klymiv I, Duda V M, Vlokh R and Vlokh O, 2008. Electrogyration
and Faraday rotation in pure and Cr-doped lead germanate crystals. J. Phys.:
Condens. Matter. 20: 075201.doi: http://dx.doi.org/10.1088/0953-8984/20/7/075201
 
Aizu K, 1964. Reversal in optical rotatory power – “gyroelectric” crystals
and “hypergyroelectric” crystals. Phys. Rev. 133: 1584–1588.doi: http://dx.doi.org/10.1103/PhysRev.133.A1584
 
Strukov B A and Levanyuk A P. Physical fundamentals of ferroelectric phenomena.
Moscow: Nauka (1983).
Ivanov N R, Levanyuk A P, Minyukov S A, Kroupa J and Fousek J, 1990. The
critical temperature dependence of birefringence near the normal-incommensurate
phase transition in Rb2ZnBr4. J. Phys.: Condens. Matter. 2: 5777–5786.doi: http://dx.doi.org/10.1088/0953-8984/2/26/015
 
Levanyuk A P, Minyukov S A and Vallade M, 1998. Influence of symmetry breaking
defects on first order structural phase transitions. J. Korean Phys. Soc.
32: S62–S64.
Levanyuk A P and Sigov A S. Defects and structural phase transitions. New
York: Gordon and Breach (1988).
Ivanov N R and Fousek J, 1990. Thermal expansion and critical behaviour
of Rb2ZnBr4 crystal. Izv. AN SSSR, Ser. Fiz. 54: 659–662.
Girnyk I S, Kushnir O S and Shopa R Y, 2005. Linear thermal expansion of
ferroelectric deuterated triglycine sulphate. Ferroelectrics 317: 75–78.doi: http://dx.doi.org/10.1080/00150190590963471
 
Kushnir O S, Shopa R Y and Polovynko I I, 2007. Optical studies of ferroelectric
phase transition in deuterated triglycine sulfate crystals. Phase Transitions.
80: 89–94. doi:
http://dx.doi.org/10.1080/01411590601092761
Vlokh O G, Sinyakov E V, Lazko L A, Monya V G and Klimov I M, 1977. Electrogyration
and dielectric properties of solid solutions based on lead germanate. Fiz.
Tverd. Tela 19: 1032–1035.
Vlokh O G, Sinyakov E V, Lazko L A and Monya V G, 1978. Spontaneous and
induced electrogyration in crystals. Fiz. Tverd. Tela 20: 2098–2100.
Koralewski M and Molak A, 1999. Effect of uniaxial pressure on the ferroelectric
phase transition in Pb5Ge3O11. J. Phys.: Condens. Matter. 11: 1341–1352.doi: http://dx.doi.org/10.1088/0953-8984/11/5/019
 
Molak A., Koralewski M, Saunders G A and Juszczyk W, 2005. Effect of uniaxial
pressure on the ferroelectric phase transition in Pb5Ge3O11:Ba crystals.
Acta Physica Polonica. 108: 513–520.
Golestani-Fard F and Freer R, 1990. The preparation and properties of Pb5-xBaxGe3O11
ceramics for pyroelectric applications. 1990 IEEE 7th International Symposium
on Applications of Ferroelectrics (Cat. No. 90CH2800-1). IEEE New York.
p. 391–394. |