Home
page
Other articles
in this issue |
Correlation method
for measuring the largest Lyapunov exponent in optical fields
Gavrylyak M.S., Maksimyak A.P., Maksimyak
P.P.
Department of Correlation Optics, Yuri Fedkovych Chernivtsi
National University, 2 Kotsyubinsky St., 58012 Chernivtsi, Ukraine
download full version
We propose an analog interference method for measuring the largest Lyapunov
exponent for the optical fields generated by scattering objects and media.
The method is further developed to make a device for high-speed real-time
measurements of transverse correlation function of the optical fields.
Keywords: space-time chaos, the largest Lyapunov
exponent, transverse correlation function, nematic liquid crystal, interference
method.
PACS: 42.25.Hz, 42.25.Fx
UDC: 535.36, 535.41
Ukr. J. Phys. Opt.
9 120-127
doi: 10.3116/16091833/9/2/119/2008
Received: 25.03.2008
|
|
REFERENCES
1. Harrison R. G., Firth W. J. and Al-Saidi I. A. Instabilities and
routes to chaos in passive all-optical resonators containing molecular
gases. Instabilities and Chaos in Quantum Optics, Arecchi F. T. and Harrison
R. G., eds., Berlin: Springer Verlag (1987), 201–236.
2. Arecchi F T, Boccaletti S, Giacomelli G, Puccioni G P, Ramazza P
L and Residori S, 1992. Patterns, space-time chaos and topological defects
in nonlinear optics. Physica D 61: 25–39.
doi: http://dx.doi.org/10.1016/0167-2789(92)90145-D
3. Asakura T. and Uozumi J. Fractal Optics. Sapporo: Hokkaido Univ.
Press (1995).
4. Toronov V Y, Zhang X and Webb A G, 2007. A spatial and temporal
comparison of hemodynamic signals measured using optical and functional
magnetic resonance imaging during activation in human primary visual cortex.
NeuroImage 34: 1136–1148.
doi: http://dx.doi.org/10.1016/j.neuroimage.2006.08.048
5. Barré J and Dauxois T, 2001. Lyapunov exponents as a dynamical
indicator of a phase transition. Europhys. Lett. 55: 164–170.
doi: http://dx.doi.org/10.1209/epl/i2001-00396-3
6. Ebisawa S and Komatsu S, 2007. Message encoding and decoding using
an asynchronous chaotic laser diode transmitter–receiver array. Appl. Opt.
46: 4386–4396.
doi: http://dx.doi.org/10.1364/AO.46.004386
7. Politi A, Ginelli F, Yanchuk S and Maistrenko Y, 2006. From synchronization
to Lyapunov exponents and back. Physica D 224: 90–101.
doi: http://dx.doi.org/1016/j.physd.2006.09.032
8. Eckmann J-P and Ruelle D, 1985. Ergodic theory of chaos and strange
attractors. Rev. Mod. Phys. 57: 617–656.
doi: http://dx.doi.org/10.1103/RevModPhys.57.617
9. Farmer J D and Sidorowich J J, 1987. Predicting chaotic time series.
Phys. Rev. Lett. 59: 845–848.
doi: http://dx.doi.org/10.1103/PhysRevLett.59.845
10. Sano M and Sawada Y, 1985. Measurement of the Lyapunov spectrum
from a chaotic time series. Phys. Rev. Lett. 55: 1082–1085.
doi: http://dx.doi.org/10.1103/PhysRevLett.55.1082
11. Wolf A., Swift J B, Swinney H L and Vastano J A, 1985. Determining
Lyapunov exponents from a time series. Physica D 16: 285–317.
doi: http://dx.doi.org/10.1016/0167-2789(85)90011-9
12. Neumark Yu. I. and Landa P. S., Stochastic and Chaotic Fluctuations.
Moscow: Nauka (1987).
13. Rosenstein M. T., Collins J. J. and De Luca C. J. A Practical Method
for Calculating Largest Lyapunov Exponents from Small Data Sets. Boston
University: MA 02215 (1992).
14. Takens F, 1981. Detecting strange attractors in turbulence. Lect.
Notes in Math. 898: 366–381.
15. Angelsky O V, Maksimyak P P and Perun T O, 1993. Dimensionality
in optical fields and signals. Appl. Opt. 32: 6066–6071.
16. Rytov S. M., Kravtsov Yu. A. and Tatarsky V. I. Principles of Statistical
Radio-physics. Berlin: Springer (1989).
17. Akhmanov S. A., Dyakov Yu. Ye. and Chirkin A. S. Introduction to
Statistical Radiophysics and Optics. Moscow: Nauka (1981).
(c) Ukrainian Journal
of Physical Optics |