Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Joint spatial-frequency distribution of Gaussian signals and prospects of its applications for description of optical systems
Kozlovskii Yu.M.

Institute for Condensed Matter Physics, 1 Sventsitski, 79011 Lviv, Ukraine

download full version

We consider a joint spatial-frequency distribution as a result of superposition of two known Wigner and Ville distributions. The joint distribution is characterized by a certain parameter t  that plays a part of measure of superposition: the joint frequency-spatial distribution passes into the Ville one at  t=0  and coincides with the Wigner distribution at   t=1 . For the values  0< t<1   there exists a row of ‘mixed’ distributions, which represent superposition of the Wigner and Ville distributions. Explicit expression for the joint distribution of Gaussian signal is obtained by means of analytical calculations. We present graphic illustrations for the shape of joint distribution of Gaussian signal at different values of the joint parameter t. It is demonstrated that the Wigner distribution is formed as a rotation of Ville distribution on the information diagram by the angle proportional to the joint parameter  t .

Keywords: photonic crystal, Si - liquid crystal system, admixture layer, bandgap width.

PACS: 05.60.+w, 05.70.Ln, 05.20.Dd, 52.25.Dg, 52.25.Fi
UDC: 
Ukr. J. Phys. Opt. 9 105-119 
doi: 10.3116/16091833/9/2/105/2008
Received: 17.01.2008 
In final form: 01.04.2008

REFERENCES

1. Cohen L, 1989. Time-frequency distributions - A review. IEEE. 77: 941-981. 
2. Boashash B., Time-frequency Signal Analysis and Processing, Elsevier, (2003). 
3. Cristobal G, Gonzalo C, Bescos J, 1991. Image filtering and analysis through the Wigner distribution. Advances in Electronics and Electron Physics Series 80: 309-397. 
4. Cohen L., Time-frequency Analysis, Prentice Hall, (1995). 
5. Mertings A., Signal Analysis, Wiley&Sons, (1999). 
6. Kurtsiefer Ch, Pfau T, Mlynek J. 1997. Measurement of the Wigner function of an ensemble of helium atom. Nature. 386: 150-153. 
    doi: 10.1038/386150a0
7. Breitenbach G, Schiller S, Mlynek J, 1997. Measurement of the quantum statesof squeezed light. Nature. 387: 471-475. 
    doi:10.1038/387471a0
8. Smithey D, Beck M, Raymer M, 1996. Measurement of Wigner distribution and the Density Matrix of a Light Mode Using Optical Homodyne tomography: Application to Squeezed States and the Vacuum. Phys. Rev. Lett. 70: 1244-1247.
    doi: http://dx.doi.org/10.1103/PhysRevLett.70.1244
9. Cohen L, 1966. Generalized phase-space distribution functions. J.Math.Phys. 7: 781-786. 
    doi: http://dx.doi.org/10.1063/1.1931206
10. De Bruijn N, 1973. A theory of generalized functions, with applications to Wigner distribution and Weyl correspondence. Nieuw Archief voor Wiskunde. 3(XXI): 205-280. 
11. Durak L. Novel time-frequency analysis technique for deterministic signals, PhD thesis, Institute of engineering and science of Bilken University. Turkey, (2003). 
12. Shovgenyuk MV, Kozlovskii YuM, 2000. Similitary of conjugate images at fractional Fourier transform. Dop. NAN Ukraine 6: 92-97.
13. Chountasis S, Vourdas A and Bendjaballah C, 1999. Fractional Fourier operators and generalized Wigner functions. Phys. Rev. A. 60: 3467-3473.
    doi: http://dx.doi.org/10.1103/PhysRevA.60.3467
14. Chountasis S, Vourdas A, 1998. Weyl functions and their use in the studyof quantum interference. Phys. Rev. A. 58: 848-855.
    doi: http://dx.doi.org/10.1103/PhysRevA.58.848
15. Chountasis S, Vourdas A, 1998. Weyl and Wigner functions in an extended phase-space formalism. Phys. Rev. A. 58: 1794-1798.
    doi: http://dx.doi.org/10.1103/PhysRevA.58.1794
16. Shovgenyuk MV, Preprint ICMP-92-25U, Lviv, (1992).
17. Kozlovskii YuM 2003. Generalized fractional Fourier transform and optical systems. Ukr.J.Phys.Opt. 3: 124-134. 
    doi: http://dx.doi.org/10.3116/16091833/4/3/124/2003

(c) Ukrainian Journal of Physical Optics