Ukrainian Journal of Physical Optics |
|
1. Meier F. and Zakharchenya B. P. Optical Orientation. Amsterdam: North-Holland (1984). 2. Ganichev S and Prettl W, 2003. Spin photocurrents in quantum wells. J. Phys.: Condens. Matter. 15: R935 - R983. doi:10.1088/0953-8984/15/20/204 http://dx.doi.org/10.1088/0953-8984/15/20/204 3. Zutic I, Fabian S and Das Sarma S, 2004. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76: 323-410. doi:10.1103/RevModPhys.76.323 http://dx.doi.org/10.1103/RevModPhys.76.323 4. Awschalom D.D. and Samarth N. Semiconductor Spintronics and Quantum Computation. Berlin: Springer (2002). 5. Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M, 2001. Spintronics: A spin-based electronics vision for the future. Science 294: 1488-1495. doi:10.1126/science.1065389 http://dx.doi.org/10.1126/science.1065389 6. Schmidt G, Ferrand D, Molenkamp L W, Filip AT and van Wees B J, 2000. Fundamental obsta-cle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62: R4790-R4793. doi:10.1103/PhysRevB.62.R4790 http://dx.doi.org/10.1103/PhysRevB.62.R4790 7. Fabian J and Das Sarma S J, 1999. Spin relaxation of conduction electrons. J.Vac. Sci. Technol. B 17: 1708-1715. doi:10.1116/1.590813 http://dx.doi.org/10.1116/1.590813 8. Vadim I Puller, Lev G Mourokh, Norman J Horing, and Anatoly Yu Smirnov, 2003. Electron spin relaxation in a semiconductor quantum well. Phys. Rev. B 67: 155309-155318. doi:10.1103/PhysRevB.67.155309 http://dx.doi.org/10.1103/PhysRevB.67.155309 9. Lifshitz E. M. and Pitaevskii L. P. Physical Kinetics. Oxford: Pergamon (1997). 10. Picoli G, Gravey P, Ozcul C and Vieux V, 1989. Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: A new mechanism of resonance. J. Appl. Phys. 66: 3798-3813. doi:10.1063/1.344043 http://dx.doi.org/10.1063/1.344043 11. Zutic I, Fabian J and Das Sarma S, 2001. Spin injection through the depletion layer: A theory of spin-polarized p-n junctions and solar cells. Phys. Rev. B 64: 121201-121205. doi:10.1103/PhysRevB.64.121201 http://dx.doi.org/10.1103/PhysRevB.64.121201 12. Zutic I, Fabian J and Das Sarma S, 2001. Proposal for a spin polarized solar battery. Appl. Phys. Lett. 79: 1558-1560. doi:10.1063/1.1399002 http://dx.doi.org/10.1063/1.1399002 13. Gorley PM, Dugaev VK, Barnas J, Horley PP, Mysliuk OM, 2007. Spin polarization and relaxa-tion in a semiconductor with impurity absorption of circularly polarized light. J. Phys.: Condens. Matter. 19: 266205-266214. doi:10.1088/0953-8984/19/26/266205 http://dx.doi.org/10.1088/0953-8984/19/26/266205 14. Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y and Ohtani K, 2000. Elec-tric-Field control of ferromagnetism. Nature 408: 944-946. doi:10.1038/35050040 http://dx.doi.org/10.1038/35050040 15. Boukari H, Kossacki P, Bertolini M, Ferrand D, Cibert J, Tatarenko S, Wasiela A, Gaj J A and Dietl T, 2002. Light and Electric Field Control of Ferromagnetism in Magnetic Quantum Struc-tures. Phys. Rev. Lett. 88: 207204-207208. doi:10.1103/PhysRevLett.88.207204 http://dx.doi.org/10.1103/PhysRevLett.88.207204 16. Torrance JB, Shafer MW and McGuire T R, 1972. Bound Magnetic Polarons and the Insulator-Metal Transition in EuO. Phys. Rev. Lett. 29: 1168-1171. doi:10.1103/PhysRevLett.29.1168 http://dx.doi.org/10.1103/PhysRevLett.29.1168 17. Dietl T and Spalek J, 1983. Effect of thermodynamic fluctuations of magnetization on the bound magnetic polaron in dilute magnetic semiconductors. Phys. Rev. B 28: 1548-1563. doi:10.1103/PhysRevB.28.1548 http://dx.doi.org/10.1103/PhysRevB.28.1548 18. Gorley P. M., Dugaev V. K., Barnas J., Vieira M., Horley P. P. and Mysliuk O. M. Novel Semi-conductor Materials for Room-Temperature Ferromagnetism. Warrendale: Materials Research Society (2007). 19. Ippolitova G K, Omel’yanovski E M, Pavlov N M, Nashel’skiy A Ya and Yakobson S V, 1977. Behaviour of Fe impurity in InP and influence of covalence on the spectrum of EPR of ion Fe3+ in Td-symmetry compounds. Fiz. Tekhn. Poluprovod. 11: 1315-1320. 20. Pressel K, Bohnert G, Dörnen A, Kaufmann B, Denzel J, and Thonke K, 1993. Optical study of spin-flip transitions at Fe3+ in InP. Phys. Rev. B 47: 9411-9417. doi:10.1103/PhysRevB.47.9411 http://dx.doi.org/10.1103/PhysRevB.47.9411 21. Gorley PM, Horley PP, Gonzalez-Hernandez J Vorobiev YuV, 2002. Self-organization proc-esses in semiconductor under photo-induced Gunn effect. Mater. Sci. Eng. B 88: 286-291. doi:10.1016/S0921-5107(01)00887-X http://dx.doi.org/10.1016/S0921-5107(01)00887-X 22. Samarskii A. A. and Gulin A. V. Numerical methods. Moscow: Nauka (1999). 23. Parsons RR, 1969. Band-To-Band Optical Pumping in Solids and Polarized Photoluminescence. Phys. Rev. Lett. 23: 1152-1154. doi:10.1103/PhysRevLett.23.1152 http://dx.doi.org/10.1103/PhysRevLett.23.1152 24. Ekimov A I and Safarov V I, 1970. Optical Orientation of Carriers in Interbank Transitions in Semiconductors. Pisma Zhurn. Eksp. Teor. Fiz. 12: 198-201. 25. Pearsall T. P. Properties, Processing and Applications of Indium Phosphide. London: INSPEC, Institution of Electrical Engineers (2000). 26. Haken H. Synergetics. Berlin, Heidelberg, New York: Springer Verlag (1978). |