Ukrainian Journal of Physical Optics 

Home page

Other articles 

in this issue
Spin polarization of dilute magnetic semiconductors under optical excitation of impurity levels
1Gorley P.M., 1Mysliuk O.M., 2Vieira M., 1,3Horley P.P., 4Dugaev V.K., 5Barnas J.

1Department of Electronics and Energy Engineering, Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky St., 58012 Chernivtsi, Ukraine
2Dept. de Engenharia Electrotécnica, ISEL, Rua Conselheiro Emídio Navarro, 1950-062 Lisbon, Portugal
3CFIF, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
4Department of Mathematics and Applied Physics, Rzeszów University of Technology, 6 Powstanców Warszawy St., 35-959 Rzeszów, Poland
5Institute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznan, Poland

download full version

We use the method based on kinetic equations to analyze the influence of intensity and polarization of incident light, concentration of impurities with unfilled 3d or 4f shells and long-term relaxation times of conduction electrons and magnetic ions upon the degree of spin polarization. In case of spatially inhomogeneous stationary states, the distribution of band electrons is shown to oscillate in space, with a transition to spatially homogeneous distribution for infinitely thick sample. It is also demonstrated that the maximum spin polarization degree he for the band electrons can be reached for the thickness of semiconductor film comparable to the diffusion length for the minority carriers.

Keywords: optical excitation, spin polarization, spintronics, diluted magnetic semi-conductors

PACS: 72.25.Fe, 72.25.Rb, 72.25.-b, 78.20.Bh, 78.40.Fy
UDC: 535.568
Ukr. J. Phys. Opt. 9 60-71 
doi: 10.3116/16091833/9/1/60/2008
Received: 18.12.2007

1. Meier F. and Zakharchenya B. P. Optical Orientation. Amsterdam: North-Holland (1984).
2. Ganichev S and Prettl W, 2003. Spin photocurrents in quantum wells. J. Phys.: Condens. Matter. 15: R935 - R983.
3. Zutic I, Fabian S and Das Sarma S, 2004. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76: 323-410.
4. Awschalom D.D. and Samarth N. Semiconductor Spintronics and Quantum Computation. Berlin: Springer (2002).
5. Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M, 2001. Spintronics: A spin-based electronics vision for the future. Science 294: 1488-1495.
6. Schmidt G, Ferrand D, Molenkamp L W, Filip AT and van Wees B J, 2000. Fundamental obsta-cle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62: R4790-R4793.
7. Fabian J and Das Sarma S J, 1999. Spin relaxation of conduction electrons. J.Vac. Sci. Technol. B 17: 1708-1715.
8. Vadim I Puller, Lev G Mourokh, Norman J Horing, and Anatoly Yu Smirnov, 2003. Electron spin relaxation in a semiconductor quantum well. Phys. Rev. B 67: 155309-155318.
9. Lifshitz E. M. and Pitaevskii L. P. Physical Kinetics. Oxford: Pergamon (1997).
10. Picoli G, Gravey P, Ozcul C and Vieux V, 1989. Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: A new mechanism of resonance. J. Appl. Phys. 66: 3798-3813.
11. Zutic I, Fabian J and Das Sarma S, 2001. Spin injection through the depletion layer: A theory of spin-polarized p-n junctions and solar cells. Phys. Rev. B 64: 121201-121205.
12. Zutic I, Fabian J and Das Sarma S, 2001. Proposal for a spin polarized solar battery. Appl. Phys. Lett. 79: 1558-1560.
13. Gorley PM, Dugaev VK, Barnas J, Horley PP, Mysliuk OM, 2007. Spin polarization and relaxa-tion in a semiconductor with impurity absorption of circularly polarized light. J. Phys.: Condens. Matter. 19: 266205-266214.
14. Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y and Ohtani K, 2000. Elec-tric-Field control of ferromagnetism. Nature 408: 944-946.
15. Boukari H, Kossacki P, Bertolini M, Ferrand D, Cibert J, Tatarenko S, Wasiela A, Gaj J A and Dietl T, 2002. Light and Electric Field Control of Ferromagnetism in Magnetic Quantum Struc-tures. Phys. Rev. Lett. 88: 207204-207208.
16. Torrance JB, Shafer MW and McGuire T R, 1972. Bound Magnetic Polarons and the Insulator-Metal Transition in EuO. Phys. Rev. Lett. 29: 1168-1171.
17. Dietl T and Spalek J, 1983. Effect of thermodynamic fluctuations of magnetization on the bound magnetic polaron in dilute magnetic semiconductors. Phys. Rev. B 28: 1548-1563.
18. Gorley P. M., Dugaev V. K., Barnas J., Vieira M., Horley P. P. and Mysliuk O. M. Novel Semi-conductor Materials for Room-Temperature Ferromagnetism. Warrendale: Materials Research Society (2007).
19. Ippolitova G K, Omel’yanovski E M, Pavlov N M, Nashel’skiy A Ya and Yakobson S V, 1977. Behaviour of  Fe impurity in InP and influence of covalence on the spectrum of EPR  of ion Fe3+  in  Td-symmetry compounds. Fiz. Tekhn. Poluprovod. 11: 1315-1320.
20. Pressel K, Bohnert G, Dörnen A, Kaufmann B, Denzel J, and Thonke K, 1993. Optical study of spin-flip transitions at Fe3+ in InP. Phys. Rev. B 47: 9411-9417.
21. Gorley PM, Horley PP, Gonzalez-Hernandez J Vorobiev YuV, 2002. Self-organization proc-esses in semiconductor under photo-induced Gunn effect. Mater. Sci. Eng. B 88: 286-291.
22. Samarskii A. A. and Gulin A. V. Numerical methods. Moscow: Nauka (1999).
23. Parsons RR, 1969. Band-To-Band Optical Pumping in Solids and Polarized Photoluminescence. Phys. Rev. Lett. 23: 1152-1154.
24. Ekimov A I and Safarov V I, 1970. Optical Orientation of Carriers in Interbank Transitions in Semiconductors. Pisma Zhurn. Eksp. Teor. Fiz. 12: 198-201.
25. Pearsall T. P. Properties, Processing and Applications of Indium Phosphide. London: INSPEC, Institution of Electrical Engineers (2000).
26. Haken H. Synergetics. Berlin, Heidelberg, New York: Springer Verlag (1978).

(c) Ukrainian Journal of Physical Optics