Home
page
Other articles
in this issue |
Higher order modes
and topological phase in the coiled elliptical weakly guiding optical fibres
Alexeyev C.N., Lapin B.P., Yavorsky M.A.
Taurida National V.I. Vernadsky University, 4 Vernadsky
Ave., 95007 Simferopol, Crimea, Ukraine
download full version
We study the structure of l = 1 modes in strongly elliptical
coiled weakly guiding optical fibres. We establish analytically the expressions
for the modes and their polarization corrections. We show that, at certain
parameters of the fibre helix, the l = 1 modes are represented in
the local Frenet frame by uniform elliptically polarized fields. We demonstrate
that the modes turn into circularly polarized fields if the coiling-induced
perturbation becomes larger than the intrinsic spin-orbit coupling. In
this case the propagation constants comprise geometrically in-duced terms
proportional to the spin angular momentum of the mode and a topological
phase appears in the system. We show that the presence of such a geometric
phase exhibits itself in the rotation of polarization plane of LP mode
excited in the fibre. The rotation angle is found to be equal to the solid
angle subtended by the coil.
Keywords: helical fibre, Berry’s phase, topological
phase, elliptical fibre
PACS: 42.25.Bs, 42.81.Q
UDC: 535.1
Ukr. J. Phys. Opt.
9 34-50 doi: 10.3116/16091833/9/1/34/2008
Received: 08.11.2007 |
|
REFERENCES
1. Berry MV, 1984. Quantum phase factor accompanying adiabatic changes.
Proc Roy. Soc. Lond. A 392: 45-57.
2. Shapere A. and Wilczek F. Geometric phases in physics. World Scientific:
Singapore, (1989).
3.Tomita A and Chiao RY, 1986. Observation of Berry’s topological phase
by use of an optical fibre. Phys. Rev. Lett. 57: 937-940.
doi:10.1103/PhysRevLett.57.937
http://dx.doi.org/10.1103/PhysRevLett.57.937
4. Chiao RY and Wu Y-S, 1986. Manifestation of Berry’s topological
phase for the phton, Phys. Rev. Lett. 57: 933-936.
doi:10.1103/PhysRevLett.57.933
http://dx.doi.org/10.1103/PhysRevLett.57.933
5. Berry MV, 1988. The geometric phase. Scient. Amer. 259: 26-34.
6. Ross JN, 1984. The rotation of the polarization in low birefringence
single-mode optical fibres due to geometric effects. Opt. Quant. Electron.
16: 455-461.
doi:10.1007/BF00619638 http://dx.doi.org/10.1007/BF00619638
7. Berry MV, 1987. Interpreting the anholonomy of coiled light. Nature
326: 277-278.
doi:10.1038/326277a0 http://dx.doi.org/10.1038/326277a0
8. Galvez EJ and Holmes CD, 1999. Geometric phase of optical rotators.
J. Opt. Soc. Am. A. 16: 1981-1985.
doi:10.1364/JOSAA.16.001981
http://dx.doi.org/10.1364/JOSAA.16.001981
9. Segev M, Solomon R and Yariv A, 1992. Manifestation of Berry’s phase
in im-agebearing optical beams. Phys. Rev. Lett. 69: 590-593 .
doi:10.1103/PhysRevLett.69.590
http://dx.doi.org/10.1103/PhysRevLett.69.590
10. Kataevskaya IV and Kundikova ND, 1995. Influence of the helical
shape of a fibre waveguide on the propagation of ligh. Quant. Electron.
25: 927-928 .
doi:10.1070/QE1995v025n09ABEH000504
http://dx.doi.org/10.1070/QE1995v025n09ABEH000504
11. Vasnetsov M. and Staliunas K. Optical Vortices, Vol. 228 in Horizons
of World Physics, Nova Science: Huntington, N.Y. (1999).
12. Mokhun I.I. Introduction to linear singular optics. In Optical
Correlation Techniques and Applications, Bellingham: SPIE Press PM168.
(2007).
13. Alexeyev CN and Yavorsky MA, 2006. Topological phase evolving from
the orbital angular momentum of “coiled” quantum vortices. J. Opt. A: Pure
Appl. Opt. 8: 752-758
doi:10.1088/1464-4258/8/9/008
http://dx.doi.org/10.1088/1464-4258/8/9/008
14. Soskin MS, Gorshkov VN, Vasnetsov MV, Malos JT and Heckenberg NR,
1998. Topological charge and angular momentum of light carrying optical
vortices. Phys. Rev. A. 56: 4064-4075.
doi:10.1103/PhysRevA.56.4064
http://dx.doi.org/10.1103/PhysRevA.56.4064
15. Bliokh KYu, 2006. Geometrical optics of beams with vortices: Berry
phase and or-bital angular momentum Hall effect. Phys. Rev. Lett. 97: 043901
.
doi:10.1103/PhysRevLett.97.043901
http://dx.doi.org/10.1103/PhysRevLett.97.043901
16. Alexeyev CN and Yavorsky MA, 2007. Berry's phase for optical vortices
in coiled optical fibres. J. Opt. A: Pure Appl. Opt. 9: 6-14.
doi:10.1088/1464-4258/9/1/002
http://dx.doi.org/10.1088/1464-4258/9/1/002
17. Alexeyev CN, Lapin BA and Yavorsky MA, 2007. Optical vortices and
topological phase in strongly anisotropic coiled few-mode optical fibres.
J. Opt. Soc. Am. B. 24, 2666-2675.
doi:10.1364/JOSAB.24.002666
http://dx.doi.org/10.1364/JOSAB.24.002666
18. Alexeyev CN and Yavorsky MA, 2007 Propagation of optical vortices
in coiled weakly guiding optical fibres. Opt. Spektrosk. 102: 754-759 .
doi:10.1134/S0030400X07050177
http://dx.doi.org/10.1134/S0030400X07050177
19. Alexeyev CN and Yavorsky MA, 2006. Hybridisation of the topological
and dynami-cal phase in coiled optical fibres. J. Opt. A: Pure Appl. Opt.
8: 647-651 .
doi:10.1088/1464-4258/8/8/005
http://dx.doi.org/10.1088/1464-4258/8/8/005
20. Snyder A.W. and Love J.D. Optical Waveguide Theory. Chapman and
Hall: London, New York, (1985).
21. Chen G and Wang Q, 1995. Mode coupling in single-mode helical fibres
under perturbation. Opt. Quant. Electron. 27: 1069-74 .
22. Chen G and Wang Q, 1995. Local fields in single-mode helical fibres,”
Opt. Quant. Electron. 27: 1069-1074.
doi:10.1007/BF00292136 http://dx.doi.org/10.1007/BF00292136
23. Soh DBS, Nilsson J, Sahu JK and Cooper LJ, 2003. Geometrical factor
modification of helical-core fibre radiation loss formula. Opt. Comm. 222:
235-242.
doi:10.1016/S0030-4018(03)01599-2
http://dx.doi.org/10.1016/S0030-4018(03)01599-2
24. Shute MW, Sr., Brown CS and Jarzynski J, 1997. Polarization model
for a helically wound optical fibre. J. Opt. Soc. Am. A. 14: 3251-3261
.
25. Tsao CYH, 1987. Polarization parameters of plane waves in hybrid
birefringent optcal fibres. J. Opt. Soc. Am. A. 4: 1407-1412 .
26. Alexeyev CN, Soskin MS and Volyar AV, 2000. Spin-orbit interaction
in a generic vortex field transmitted through an elliptic fibre. Semicond.
Phys., Quant. Electron. and Optoelectron. 3: 501-513.
27. Menachem Z and Mond M, 2006. Infrared wave propagation in a helical
waveguide with inhomogeneous cross section and application. Electromagn.
Waves. 61: 159-192.
doi:10.2528/PIER06020205
http://dx.doi.org/10.2528/PIER06020205
28. Korn G.A. and Korn T.M., Mathematical handbook for scientists and
engineers. McGrawhill: New-York, (1968).
29. V.S. Liberman and B.Ya. Zel’dovich, Spin-orbit interaction of a
photon in an inhmo-geneous medium. Phys. Rev. A. 45, 5199-5207 (1992).
doi:10.1103/PhysRevA.46.5199
http://dx.doi.org/10.1103/PhysRevA.46.5199
30. Volyar AV, Zhilaitis VZ and Shvedov VG, 1999. Optical eddies in
small-mode fbres: II. The spin–orbit interaction. Opt. Spektrosk. 86: 593-598.
31. Dooghin AV, Kundikova ND, Liberman VS and Zel’dovich BYa, 1992.
Optical Magnus effect. Phys. Rev. A 45: 8204 - 8208 .
doi:10.1103/PhysRevA.45.8204
http://dx.doi.org/10.1103/PhysRevA.45.8204
32. Bliokh KYu and Bliokh YuP, 2004. Modified geometrical optics of
a smoothly inhmogeneous isotropic medium: The anisotropy, Berry phase,
and the optical Magnus efect. Phys. Rev. E 70: 026605.
doi:10.1103/PhysRevE.70.026605
http://dx.doi.org/10.1103/PhysRevE.70.026605
33. Davydov A.S. Quantum mechanics. Pergamon: Oxford, (1976).
34. Alexeyev CN and Yavorsky MA, 2004. Optical vortices and the higher
order modes of twisted strongly elliptical optical fibres. J. Opt. A: Pure
Appl. Opt. 6: 824-832.
doi:10.1088/1464-4258/6/9/002
http://dx.doi.org/10.1088/1464-4258/6/9/002
35. Alexeyev CN and Yavorsky MA, 2007. Pancharatnam’s phase induced
by spin-orbit interaction in weakly guiding twisted elliptical fibres.
Ukr. J. Phys. Opt. 8: 1-12 .
doi:10.3116/16091833/8/1/1/2007
http://dx.doi.org/10.3116/16091833/8/1/1/2007
36. Pancharatnam S., Collected works of S. Pancharatnam. Oxford: University
Press, (1975).
37. Berry MV, 1987. The adiabatic phase and Pancharatnam’s phase for
polarized light. J. Mod. Opt. 34: 1401-07 .
doi:10.1080/09500348714551321
http://dx.doi.org/10.1080/09500348714551321
(c) Ukrainian Journal
of Physical Optics |