Ukrainian Journal of Physical Optics 

Home page

Other articles 

in this issue
Behaviour of pulsed vortex beam with high topological charge in ionized dielectrics 
Khasanov O.K., Fedotova O.M., Smirnova T.V., Petukh Yu.N., Volyar A.V., Sukhorukov A.P.

It has come to the attention of Editorial Board of Ukr.J.Phys.Opt. that this article should not have been submitted for publication owing to its substantial replication of an earlier paper (R.A. Vlasov, O.K. Khasanov and T.V. Smirnova 2005. Evolution of tubular singular pulsed beams upon ionization. Quantum Electronics 35: 947-952). 

Consequently this paper has been retracted by the Editorial Board of Ukr.J.Phys.Opt. 

Dynamics of powerful femtosecond singular-phase pulsed beams in a dielectric medium is analyzed under the ionization conditions. The multiphoton ionization is revealed to contribute to the stable (quasi-soliton) regime of pulse propagation over the distances exceeding several diffraction lengths.

Keywords: femtosecond pulsed beam, singular phase, topological charge, Kerr nonlinearity, multiphoton ionization, free-electron plasma

PACS: 41.85.–p, 42.65.Jx
UDC: 535.31
Ukr. J. Phys. Opt. 9 10-21   doi: 10.3116/16091833/9/1/10/2008
Received: 23.11.2007

  1. Nye, JF and Berry MV, 1974. Dislocations in wave trains. Proc. Roy. Soc. London, Ser.A 336: 165-190.
  2. Soskin MS and Vasnetsov MV, 2001. Singular optics, In: Progress in Optics, Ed. E. Wolf (North-Holland, Amsterdam), 42: 219-276.
  3. Vasnetsov M.V., Staliunas K., Optical Vortices (Horizons in World Physics 228), Commack, New York: Nova Science Publishers, 1999.
  4. Allen L, Padgett MJ, Babiker M, 1999. The orbital angular momentum of light. In: Progress in Optics (North-Holland, Amsterdam) 39: 291-372.
  5. Yin J, Gao W, Zhu Y, 2003. Generation of dark hollow beams and their applications. In: Progress in Optics, North-Holland, Amsterdam 45: 119- 204.
  6. Ashkin A, Dziedzic J M, Bjorkholm J E, and Chu S, 1986. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11: 288-290.
  7. Bongs K, Burger S, Dettmer S, Hellweg D, Arlt J, Ertmer W, Sengstock K, 2001. Waveguide for Bose-Einstein condensates. Phys. Rev. A 63: 031602/1-4.
  8. doi:10.1103/PhysRevA.63.031602
  9. Esarey E, Sprangle P, Krall J and Ting A, 1996. Overview of plasma-based accelera-tor concepts. IEEE Trans. Plasma Sci. 24: 252-288.
  10. doi:10.1109/27.509991
  11. Milchberg HM, Durfee CC, McIlrath TJ, 1995. High-order frequency conversion in the plasma waveguide. Phys. Rev.Let. 25: 2494-2497.
  12. doi:10.1103/PhysRevLett.75.2494
  13. Muthukrishnan A, Stroud Jr. CR, 2002. Entanglement of internal and external angular momenta of a single atom. Journ. Opt. B: Quantum Semiclass. Opt. 4: 73
  14. doi:10.1088/1464-4266/4/2/371
  15. Kivshar Yu.S., Agrawal G.P., Optical solitons: from fibers to photonic crystals. San Diego: Academic Press, (2003).
  16. Bigelow MS, Zerom P, Boyd RW, 2004. Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor. Phys. Rev.Let. 92: 083902
  17. doi:10.1103/PhysRevLett.92.083902
  18. Desyatnikov AS, Kivshar YuS, and Torner L, 2005. Optical vortices and vortex soli-tons, in Progress in Optics. Ed. E. Wolf (Elsevier, Amstredam) 47: 219-319.
  19. Desyatnikov A, Maimistov A, Malomed B, 2000. Three-dimensional spinning soli-tons in dispersive media with the cubic- quintic nonlinearity. Phys. Rev. E 61: 3107-3113. 
  20. doi:10.1103/PhysRevE.61.3107
  21. Towers I, Buryak A, Sammut R, Malomed B, Crasovan L, and Mihalache D, 2001. Stability of spinning ring solitons in the cubic-quintic nonlinear Schroedinger equation. Phys. Lett. A 288: 292-298.
  22. doi:10.1016/S0375-9601(01)00565-5
  23. Kartashov YV, Carretero-González R, Malomed BA, Vysloukh VA, and Torner L, 2005. Multipole-mode solitons in Bessel optical lattices. Optics Express 13: 10703-10710.
  24. doi:10.1364/OPEX.13.010703
  25. Skupin S., Saffman M., Krolikowski W., Bang O., 2007. Enhanced stability of nonlo-cal solitons in saturable focusing media. CLEO®/Europe-IQEC’2007, Munich, Germany: CD1-2-MON.
  26. Skupin S, Bang O, Edmundson D, and Krolikowski W, 2006. Stability of two-dimensional spatial solitons in nonlocal nonlinear media. Phys. Rev. E 73: 066603.
  27. doi:10.1103/PhysRevE.73.066603
  28. Buccoliero D, Lopez-Aguayo S, Skupin S, Desyatnikov AS, Bang O, Krolikowski W, Kivshar YS, 2007. Spiralling solitons and multipole localized modes in nonlocal nonlinear media. Physica B 394: 351–356.
  29. doi:10.1016/j.physb.2006.12.063
  30. Berge L, Couairon A, 2000. Nonlinear propagation of self-guided ultra-short pulses in ionized gases. Physics of Plasmas. 7: 210-230.
  31. doi:10.1063/1.873816
  32. Tzortzakis S, Sudrie L, Franco M, Prade B, Mysyrowics A, Couairon A, Berge L, 2001. Self-guided propagation of ultrashort IR laser pulses in fused silica. Phys Rev. Lett. 87: 213902.
  33. doi:10.1103/PhysRevLett.87.213902
  34. Von der Linde D and Schuler H, 1996. Breakdown threshold and plasma formation in femtosecond laser-solid interaction. J. Opt. Soc. Am. B 13: 216-222.
  35. Gaeta A, 2000. Catastrophic collapse of ultrashort pulses. Phys.Rev. Lett. 84: 3582-3585.
  36. doi:10.1103/PhysRevLett.84.3582
  37. Samarskii A.A. The theory of difference schemes. Moscow: Nauka, (1989).
  38. Kandidov VP, Kosareva OG, Koltun AA, 2003. Nonlinear-optical transformation of a high-power femtosecond laser pulse in air. Quant. Elektr. 33:69-75.
  39. doi:10.1070/QE2003v033n01ABEH002366
  40. Wu Zh, Jiang H, Luo L, Guo H, Yang H, and Gong Q, 2002. Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica Opt. Lett. 27: 448-450.
  41. doi:10.1364/OL.27.000448
  42. Khasanov OK, Smirnova TV, Fedotova OM, Suhorukov AP, von der Linde D, 2003. Powerful femtosecond pulse interaction with Kerr dielectrics. In Jubil. Digest: “Topi-cal problems of solid state physics” Minsk, Belorusskaya Navuka: 573-583.
  43. Turitsyn SK, 1997. Theory of an average pulse propagation in high-bit-rate optical transmission systems with strong dispersion management. JETP Letters. 65: 812-817. 
  44. doi:10.1134/1.567435
(c) Ukrainian Journal of Physical Optics