Home
page
Other articles
in this issue |
Optical vortices
and Airy’ spiral in chiral crystals
Volyar A., Rubass A., Shvedov V., Fadeyeva
T., Kotlyarov K.
Physics Department, Taurida National V. Vemadsky University,
4 Vernadsky Ave., 95007 Simferopol, Crimea, Ukraine
download full version
Keywords: optical vortex, geometrical phase,
Airy' spiral
PACS: 41.85.-p, 42.25.Ja, 42.25.Lc
Ukr. J. Phys. Opt. 8 166-181
doi: 10.3116/16091833/8/3/166/2007
Received: 20.06.2007
After revision: 20.08.2007
We consider both theoretically and experimentally
propagation of a singular beam along a single chiral crystal and a stack
of two such crystals with the opposite signs of their chirality coefficients.
We develop a matrix approach for describing behavior of the beam singularities.
The beams with the eigen polarization turn out to carry centered optical
vortices with double topological charges. At the same time, a circularly
polarized beam, when propagating, acquires an additional unrequited phase
having much to do with the geometrical Pancharatnam phase. The sign of
the phase is defined by a direction of polarization circularity. To display
experimentally the distribution of the geometrical phase we suggest employing
two circularly polarized beams with opposite the circularities. The spiral
image appearing behind the binary crystal system and the polarization filter
represents a set of spiral and ring edge dislocations of the wave front.
They outline a profile of geometrical phase of the beam. Such the dislocation
system is known in optical crystallography. It is nothing else than the
four-fold Airy' spiral. We show also that the system of a chiral crystal
with a purely anisotropic crystal, as well as a single chiral crystal combined
with a circular polarization filter, are able to form a dark spiral line,
too. However, such the line does not represent the edge dislocation and
is shaped by means of a chain of optical vortices.
|
|
REFERENCES
1. Soskin M, and Vasnetsov M, 2001. Singular optics. Progress in Optics
42: 219-276.
2. Abramochkin E G and Volostnikov V G, 2004. Spiral light beams. Uspekhi
Phiz. Nauk. 174: 1273-1300.
3. Kasak NS, Khio NA and Ryzhevich AA, 1999. Generation of Bessel light
beams under the condition of internal conical refraction. Quant. Electr.
29: 1020-1024.
doi:10.1070/qe1999v029n11ABEH001627
http://dx.doi.org/10.1070/qe1999v029n11ABEH001627
4. Volyar A, Fadeyeva T and Egorov Yu, 2002. Vector singularities of
Gaussian beams in uniaxial crystals: Optical vortex generation. Techn.
Phys. Lett. 28: 70-77.
5. Cincotti G, Ciattoni A and Sapia C, 2003. Radially and azimuthally
polarized vortices in uniaxial crystals. Opt. Commun. 220: 33-40.
doi:10.1016/S0030-4018(03)01372-5
http://dx.doi.org/10.1016/S0030-4018(03)01372-5
6. Volyar A and Fadeyeva T, 2003. Generation of singular beams in uniaxial
crystals, Opt. Spektrosk. 94: 264-274.
doi:10.1134/1.1555184
http://dx.doi.org/10.1134/1.1555184
7. Ciattoni A, Cincotti G and Palma C, 2003. Circular polarized beams
and vortex generation in uniaxial media. Journ.Opt.Soc.Am. A 20: 163-171.
doi:10.1364/JOSAA.20.000163
http://dx.doi.org/10.1364/JOSAA.20.000163
8. Vlokh R, Volyar A, Mys O and Krupych O, 2003. Appearing of the vortex
at the conical refraction. Example of NaN02 and YFe03 crystals. Ukr J.Phys.Opt.
4: 90-93.
doi:10.3116/16091833/4/2/90/2003
http://dx.doi.org/10.3116/16091833/4/2/90/2003
9. Berry M, and Dennis M, 2003. The optical singularities of birefringent
dichroic chiral crystals. Proc. Roy. Soc. Lond. A. 459: 1261-1292.
10. Berry M, 2004. Conical diffraction asymptotics: fine structure
of Poggendorff rings and axial spike. J. Opt: Pure and Appl. Opt. 6: 289-300.
doi:10.1088/1464-4258/6/4/001
http://dx.doi.org/10.1088/1464-4258/6/4/001
11. Egorov Yu, Fadeyeva T and Volyar A, 2004. The fine structure of
singular beams in crystals: colours and polarization. J. Opt: Pure and
Appl. Opt. 6: S217-S228.
doi:10.1088/1464-4258/6/5/014
http://dx.doi.org/10.1088/1464-4258/6/5/014
12. Novlitsky A and Barkovsky L, 2005. Vector Bessel beams in bianisotropic
media. J. Opt: Pure and Appl. Opt. 7: 550-557.
doi:10.1088/1464-4258/7/10/006
http://dx.doi.org/10.1088/1464-4258/7/10/006
13. Berry M, Jeffrey M and Mansuripur M, 2005. Orbital and spin angular
momentum in conical diffraction. J. Opt: Pure and Appl. Opt. 7: 685-690.
doi:10.1088/1464-4258/7/11/011
http://dx.doi.org/10.1088/1464-4258/7/11/011
14. Berry M, 2005. The optical singularities of bianisotropic crystals.
Proc. R. Soc. A. 461: 2071-2098.
doi:10.1098/rspa.2005.1507
http://dx.doi.org/10.1098/rspa.2005.1507
15. Plossmann F, Schwarz U, Maier M and Dennis M, 2005. Polarization
singularities from unfolding an optical vortex through a birefringent crystal.
Phys. Rev. Lett. 95: 253901-1-4
16. Nye J.E. Natural focusing and fine structure of light. Bristol
and Philadelphia: Institute of Physics Publishing (1999).
17. Volyar A and Fadeyeva T, 2006. Laguerre-Gaussian beams with complex
and real arguments in uniaxial crystals. Optics and Spectroscopy 101: 297-304.
doi:10.1134/S0030400X06090190
http://dx.doi.org/10.1134/S0030400X06090190
18. Berry M and Jeffrey M, 2006. Chiral conical diffraction. J. Opt:
Pure and Appl. Opt. 8: 363-372.
doi:10.1088/1464-4258/8/5/001
http://dx.doi.org/10.1088/1464-4258/8/5/001
19. Angelsky O, Maksimyak A, Maksimyak P and Hanson S, 2005. Interference
diagnostics of white-light vortices. Opt. Express 13: 8179-8183.
doi:10.1364/OPEX.13.008179
http://dx.doi.org/10.1364/OPEX.13.008179
20. Shvedov V, Krohkowski W, Volyar A, Neshev D, Desyatnikov A and
Kivshar Yu, 2005. Focusing and correlation properties of while-light vortices.
Opt. Express 13: 7393-7398.
doi:10.1364/OPEX.13.007393
http://dx.doi.org/10.1364/OPEX.13.007393
21. Volyar A, Shvedov V, Fadeyeva T, Desyatnikov A, Neshev D, Krollikowski
W and Kivshar Yu, 2006. Generation of single-charged optical vortices with
an uniaxial crystal. Opt. Express 9: 3724-3729.
doi:10.1364/OE.14.003724
http://dx.doi.org/10.1364/OE.14.003724
22. S. McClain, L. Hillman, R. Chipman, 1993. Polarization ray tracing
in anisotropic active media: II Theory and Physics. J. Opt. Soc. Am. A.
10: 2383-2393
23. Born M. and Wolf E. Principles of optics. Oxford, London: Pergamon
Press (1968).
24. Yariv A. and Yeh P. Optical waves in crystals. New York: J. Waley
and Son Inc (1984).
25. Vlokh O.G., Kobylyansky V.B., Laz'ko L.A., 1974. Light interference
in uniaxial gyrotropyc crystals and its application to determination of
gyration tensor components. Ukr.Fiz. Zhurn. 19: 1631-1638.
26. Volyar A, Shvedov V and Fadeyeva T, 1999. Topological phase in
the nonparaxial Gaussian beam. Techn. Phys. Lett. 25: 891-894.
doi:10.1134/1.1262673
http://dx.doi.org/10.1134/1.1262673
27. Courtial J and Padgett M, 2000. Limit of the orbital angular momentum
per unit energy in a light beam that can be focused onto a small particle.
Opt. Commun. 173: 269-274.
doi:10.1016/S0030-4018(99)00619-7
http://dx.doi.org/10.1016/S0030-4018(99)00619-7
28. Bekshaev A, Soskin M and Vasnetsov M, 2006. Centrifugal transformation
of the transverse structure of freely propagating paraxial light beams.
Opt. Lett. 31: 694-696.
doi:10.1364/OL.31.000694
http://dx.doi.org/10.1364/OL.31.000694
29. Andrews L. and Phillips R. Mathematical Techniques for Engineers
and Scientists. Washington, USA: SPIE Press. (2004).
30. Gori F, 2001. Polarization basis for vortex beams. J. Opt. Soc.
Am. A. 18: 1612-1617.
doi:10.1364/JOSAA.18.001612
http://dx.doi.org/10.1364/JOSAA.18.001612
31. Azzam R. and Bashara N. Ellipsometry and polarized light. Amsterdam,
New York: North-Holland publishing company. (1977).
32. Berry M and Klein S, 1995. Geometric phases from stacks of crystal
plates. J. Mod. Opt. 43: 165-180.
33. Niv A, Biener G, Kleiner V and Hasman E, 2006. Manipulation of
the Pancharatnam phase in vectorial vortices. Opt. Express 14: 4208-4220.
doi:10.1364/OE.14.004208
http://dx.doi.org/10.1364/OE.14.004208
34. Bryngdahl O, 1973. Radial- and circular-fringe interferograms.
J. Opt. Soc. Am. 9: 1098-1104.
35. Harris M, Hill CA and Vaughan JM, 1994. Optical helices and spiral
interference fringes. Opt. Comm. 106: 161-166.
doi:10.1016/0030-4018(94)90314-X
http://dx.doi.org/10.1016/0030-4018(94)90314-X
36. Cedar VA and Glazer AM, 2002. A new view of conoscopic illumination
of optically active crystals. Appl. Crystall. 35: 185-190.
doi:10.1107/S002188980200016X
http://dx.doi.org/10.1107/S002188980200016X
37. Berry M. Geometric Phases in Physics. Singapore: World Scientific
(1989).
38. Pancharatnam S, 1956. Generalized theory of interference and its
applications. Part I. Coherent pencils. Proc. Indian Acad. Sci. A. 44:
247. (reprinted in Geometric Phases in Physics. Singapore: World Scientific
(1989)).
39. Landau L.D. and Lifshitz E.M. The Classical Theory of Fields, Fourth
Edition: Volume 2 (Course of Theoretical Physics Series), Butterworth-Heinemann
(1980).
(c) Ukrainian Journal
of Physical Optics |