Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Optical vortices and Airy’ spiral in chiral crystals  
Volyar A., Rubass A., Shvedov V., Fadeyeva T., Kotlyarov K.

Physics Department, Taurida National V. Vemadsky University, 4 Vernadsky Ave., 95007 Simferopol, Crimea, Ukraine

download full version

Keywords: optical vortex, geometrical phase, Airy' spiral

PACS: 41.85.-p, 42.25.Ja, 42.25.Lc
Ukr. J. Phys. Opt. 8 166-181 
doi: 10.3116/16091833/8/3/166/2007 
Received: 20.06.2007 
After revision: 20.08.2007

We consider both theoretically and experimentally propagation of a singular beam along a single chiral crystal and a stack of two such crystals with the opposite signs of their chirality coefficients. We develop a matrix approach for describing behavior of the beam singularities. The beams with the eigen polarization turn out to carry centered optical vortices with double topological charges. At the same time, a circularly polarized beam, when propagating, acquires an additional unrequited phase having much to do with the geometrical Pancharatnam phase. The sign of the phase is defined by a direction of polarization circularity. To display experimentally the distribution of the geometrical phase we suggest employing two circularly polarized beams with opposite the circularities. The spiral image appearing behind the binary crystal system and the polarization filter represents a set of spiral and ring edge dislocations of the wave front. They outline a profile of geometrical phase of the beam. Such the dislocation system is known in optical crystallography. It is nothing else than the four-fold Airy' spiral. We show also that the system of a chiral crystal with a purely anisotropic crystal, as well as a single chiral crystal combined with a circular polarization filter, are able to form a dark spiral line, too. However, such the line does not represent the edge dislocation and is shaped by means of a chain of optical vortices.
 

REFERENCES

1. Soskin M, and Vasnetsov M, 2001. Singular optics. Progress in Optics 42: 219-276.
2. Abramochkin E G and Volostnikov V G, 2004. Spiral light beams. Uspekhi Phiz. Nauk. 174: 1273-1300.
3. Kasak NS, Khio NA and Ryzhevich AA, 1999. Generation of Bessel light beams under the condition of internal conical refraction. Quant. Electr. 29: 1020-1024.
        doi:10.1070/qe1999v029n11ABEH001627 http://dx.doi.org/10.1070/qe1999v029n11ABEH001627
4. Volyar A, Fadeyeva T and Egorov Yu, 2002. Vector singularities of Gaussian beams in uniaxial crystals: Optical vortex generation. Techn. Phys. Lett. 28: 70-77.
5. Cincotti G, Ciattoni A and Sapia C, 2003. Radially and azimuthally polarized vortices in uniaxial crystals. Opt. Commun. 220: 33-40.
        doi:10.1016/S0030-4018(03)01372-5 http://dx.doi.org/10.1016/S0030-4018(03)01372-5
6. Volyar A and Fadeyeva T, 2003. Generation of singular beams in uniaxial crystals, Opt. Spektrosk. 94: 264-274.
        doi:10.1134/1.1555184 http://dx.doi.org/10.1134/1.1555184
7. Ciattoni A, Cincotti G and Palma C, 2003. Circular polarized beams and vortex generation in uniaxial media. Journ.Opt.Soc.Am. A 20: 163-171.
        doi:10.1364/JOSAA.20.000163 http://dx.doi.org/10.1364/JOSAA.20.000163
8. Vlokh R, Volyar A, Mys O and Krupych O, 2003. Appearing of the vortex at the conical refraction. Example of NaN02 and YFe03 crystals. Ukr J.Phys.Opt. 4: 90-93.
        doi:10.3116/16091833/4/2/90/2003 http://dx.doi.org/10.3116/16091833/4/2/90/2003
9. Berry M, and Dennis M, 2003. The optical singularities of birefringent dichroic chiral crystals. Proc. Roy. Soc. Lond. A. 459: 1261-1292.
10. Berry M, 2004. Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spike. J. Opt: Pure and Appl. Opt. 6: 289-300.
        doi:10.1088/1464-4258/6/4/001 http://dx.doi.org/10.1088/1464-4258/6/4/001
11. Egorov Yu, Fadeyeva T and Volyar A, 2004. The fine structure of singular beams in crystals: colours and polarization. J. Opt: Pure and Appl. Opt. 6: S217-S228.
        doi:10.1088/1464-4258/6/5/014 http://dx.doi.org/10.1088/1464-4258/6/5/014
12. Novlitsky A and Barkovsky L, 2005. Vector Bessel beams in bianisotropic media. J. Opt: Pure and Appl. Opt. 7: 550-557.
        doi:10.1088/1464-4258/7/10/006 http://dx.doi.org/10.1088/1464-4258/7/10/006
13. Berry M, Jeffrey M and Mansuripur M, 2005. Orbital and spin angular momentum in conical diffraction. J. Opt: Pure and Appl. Opt. 7: 685-690.
        doi:10.1088/1464-4258/7/11/011 http://dx.doi.org/10.1088/1464-4258/7/11/011
14. Berry M, 2005. The optical singularities of bianisotropic crystals. Proc. R. Soc. A. 461: 2071-2098.
        doi:10.1098/rspa.2005.1507 http://dx.doi.org/10.1098/rspa.2005.1507
15. Plossmann F, Schwarz U, Maier M and Dennis M, 2005. Polarization singularities from unfolding an optical vortex through a birefringent crystal. Phys. Rev. Lett. 95: 253901-1-4
16. Nye J.E. Natural focusing and fine structure of light. Bristol and Philadelphia: Institute of Physics Publishing (1999). 
17. Volyar A and Fadeyeva T, 2006. Laguerre-Gaussian beams with complex and real arguments in uniaxial crystals. Optics and Spectroscopy 101: 297-304.
        doi:10.1134/S0030400X06090190 http://dx.doi.org/10.1134/S0030400X06090190
18. Berry M and Jeffrey M, 2006. Chiral conical diffraction. J. Opt: Pure and Appl. Opt. 8: 363-372.
        doi:10.1088/1464-4258/8/5/001 http://dx.doi.org/10.1088/1464-4258/8/5/001
19. Angelsky O, Maksimyak A, Maksimyak P and Hanson S, 2005. Interference diagnostics of white-light vortices. Opt. Express 13: 8179-8183.
        doi:10.1364/OPEX.13.008179  http://dx.doi.org/10.1364/OPEX.13.008179
20. Shvedov V, Krohkowski W, Volyar A, Neshev D, Desyatnikov A and Kivshar Yu, 2005. Focusing and correlation properties of while-light vortices. Opt. Express 13: 7393-7398.
        doi:10.1364/OPEX.13.007393 http://dx.doi.org/10.1364/OPEX.13.007393
21. Volyar A, Shvedov V, Fadeyeva T, Desyatnikov A, Neshev D, Krollikowski W and Kivshar Yu, 2006. Generation of single-charged optical vortices with an uniaxial crystal. Opt. Express 9: 3724-3729.
        doi:10.1364/OE.14.003724 http://dx.doi.org/10.1364/OE.14.003724
22. S. McClain, L. Hillman, R. Chipman, 1993. Polarization ray tracing in anisotropic active media: II Theory and Physics. J. Opt. Soc. Am. A. 10: 2383-2393
23. Born M. and Wolf E. Principles of optics. Oxford, London: Pergamon Press (1968).
24. Yariv A. and Yeh P. Optical waves in crystals. New York: J. Waley and Son Inc (1984).
25. Vlokh O.G., Kobylyansky V.B., Laz'ko L.A., 1974. Light interference in uniaxial gyrotropyc crystals and its application to determination of gyration tensor components. Ukr.Fiz. Zhurn. 19: 1631-1638.
26. Volyar A, Shvedov V and Fadeyeva T, 1999. Topological phase in the nonparaxial Gaussian beam. Techn. Phys. Lett. 25: 891-894.
        doi:10.1134/1.1262673 http://dx.doi.org/10.1134/1.1262673
27. Courtial J and Padgett M, 2000. Limit of the orbital angular momentum per unit energy in a light beam that can be focused onto a small particle. Opt. Commun. 173: 269-274.
        doi:10.1016/S0030-4018(99)00619-7 http://dx.doi.org/10.1016/S0030-4018(99)00619-7
28. Bekshaev A, Soskin M and Vasnetsov M, 2006. Centrifugal transformation of the transverse structure of freely propagating paraxial light beams. Opt. Lett. 31: 694-696.
        doi:10.1364/OL.31.000694 http://dx.doi.org/10.1364/OL.31.000694
29. Andrews L. and Phillips R. Mathematical Techniques for Engineers and Scientists. Washington, USA: SPIE Press. (2004). 
30. Gori F, 2001. Polarization basis for vortex beams. J. Opt. Soc. Am. A. 18: 1612-1617.
        doi:10.1364/JOSAA.18.001612 http://dx.doi.org/10.1364/JOSAA.18.001612
31. Azzam R. and Bashara N. Ellipsometry and polarized light. Amsterdam, New York: North-Holland publishing company. (1977).
32. Berry M and Klein S, 1995. Geometric phases from stacks of crystal plates. J. Mod. Opt. 43: 165-180.
33. Niv A, Biener G, Kleiner V and Hasman E, 2006. Manipulation of the Pancharatnam phase in vectorial vortices. Opt. Express 14: 4208-4220.
        doi:10.1364/OE.14.004208 http://dx.doi.org/10.1364/OE.14.004208
34. Bryngdahl O, 1973. Radial- and circular-fringe interferograms. J. Opt. Soc. Am. 9: 1098-1104.
35. Harris M, Hill CA and Vaughan JM, 1994. Optical helices and spiral interference fringes. Opt. Comm. 106: 161-166.
        doi:10.1016/0030-4018(94)90314-X http://dx.doi.org/10.1016/0030-4018(94)90314-X
36. Cedar VA and Glazer AM, 2002. A new view of conoscopic illumination of optically active crystals. Appl. Crystall. 35: 185-190.
        doi:10.1107/S002188980200016X http://dx.doi.org/10.1107/S002188980200016X
37. Berry M. Geometric Phases in Physics. Singapore: World Scientific (1989).
38. Pancharatnam S, 1956. Generalized theory of interference and its applications. Part I. Coherent pencils. Proc. Indian Acad. Sci. A. 44: 247. (reprinted in Geometric Phases in Physics. Singapore: World Scientific (1989)).
39. Landau L.D. and Lifshitz E.M. The Classical Theory of Fields, Fourth Edition: Volume 2 (Course of Theoretical Physics Series), Butterworth-Heinemann (1980).

(c) Ukrainian Journal of Physical Optics