Ukrainian Journal of Physical Optics |
|
1. Landau L.D. and Lifshitz E.M. Theoretical physics. Field theory. Moscow: Nauka (1973). 2. Dirac PAM 1931. Quantised Singularities in the Electromagnetic Field, Proc. London Roy. Soc. A133: 60-72. 3. Munera Hector A and Octavio Guzma, 1997. A Symmetric Formulation of Maxwell Equations. Mod. Phys. Lett. A 12: 2089-2101. doi:10.1142/S0217732397002144 http://dx.doi.org/10.1142/S0217732397002144 4. Meyl K, 1990. Potentialwirbel, Indel Verlag, Villingen-Schwenningen Band 1 ISBN 3-9802542-1-6. 5. Meyl K, 1992. Potentialwirbel, Indel Verlag, Villingen-Schwenningen Band 2 ISBN 3-9802542-2-4. 6. Harmuth Henning F, 1986. Corrections of Maxwell equations for signals I. IEEE Transactions of Electromagnetic Compatibility EMC-28: 250-258. 7. Harmuth Henning F, 1986. Corrections of Maxwell equations for signals II. IEEE Transactions of Electromagnetic Compatibility EMC-28: 259-266 8. Harmuth Henning F, 1988. Reply to T.W. Barrett’s Comments on the Harmuth ansatz: Use of a magnetic current density in the calculation of the propagation velocity of signals by amended Maxwell theory, IEEE Transactions of Electromagnetic Compatibility EMC-30: 420-421. 9. Inomata Shiuji, Paradigm of New Science - Principals for the 21st Century, Gijutsu Shuppan Pub. Co. Ltd. Tokyo (1987). 10. Rauscher Elizabeth A, Electromagnetic Phenomena in Complex Geometries and Nonlinear Phenomena, Non-Hertzian Waves and Magnetic Monopoles, Tesla Book Company, Chula Vista CA-91912. (1983). 11. Honig William M, Quaternionic Electromagnetic Wave Equation and a Dual Charge-Filled Space. Lettere al Nuovo Cimento, Ser. 2 19 /4 (28 Maggio 1977) 137-140. 12. De Rujula A, 1995. Effects of virtual monopoles. Nucl. Phys. B435: 257-276. doi:10.1016/0550-3213(94)00436-I http://dx.doi.org/10.1016/0550-3213(94)00436-I 13.G. ‘t Hooft, 1974. Magnetic monopoles in unified gauge theories. Nucl. Phys. B79: 276-284. 14. Polyakov AM, 1974. Particle Spectrum in Quantum Field Theory. JETP Lett. 20: 194-195. 15. Craigie NS, Giacomelli G, Nahm W and Shafi Q, Theory and Detection of Magnetic Monopoles in Gauge Theories, World Scientific: Singapore (1986). 16. Lazarides G, Panagiotakopoulos C and Shafi Q, 1987. Magnetic monopoles from superstring models. Phys. Rev. Lett. 58: 1707-1710. doi:10.1103/PhysRevLett.58.1707 http://dx.doi.org/10.1103/PhysRevLett.58.1707 17. Bhattacharjee P and Sigl G, 2000. Origin and Propagation of Extremely High Energy Cosmic Rays. Phys. Rept. 327: 109-247. 18. Bertani M, Giacomelli G, Mondardini MR, Pal B, Patrizii L, Predieri F, Serralugaresi P, Sini G, Spurio M, Togo V and Zucchelli S, 1990. Search for magnetic monopoles at the Tevatron collider. Europhys. Lett. 12: 613-616. 19. Fang Z, Nagaosa N, Kei S Takahashi, Asamitsu A, Mathieu R, Ogasawara T, Yamada H, Kawasaki M, Tokura Y and Terakura K, 2003. The Anomalous Hall Effect and Magnetic Monopoles in Momentum Space. Science 302: 92-95. 20. Vlokh R, 2004. Change of optical properties of space under gravitation field. Ukr. J. Phys. Opt. 5: 27-31. doi:10.3116/16091833/5/1/27/2004 http://dx.doi.org/10.3116/16091833/5/1/27/2004 21. Nandi KK and Islam A 1995. On the optical-mechanical analogy in general relativity. Amer. J. Phys. 63: 251-256. doi:10.1119/1.17934 http://dx.doi.org/10.1119/1.17934 22. Evans J, Nandi KK and Islam A, 1996. The optical-mechanical analogy in general relativity: Exact Newtonian forms for the equations of motion of particles and photons. Gen. Rel. Grav. 28: 413-438. doi:10.1007/BF02105085 http://dx.doi.org/10.1007/BF02105085 23. Fernando de Felice. 1971. On the gravitational field acting as an optical medium. Gen. Rel. Grav. 2: 347. doi:10.1007/BF00758153 http://dx.doi.org/10.1007/BF00758153 24. Puthoff HE, 2002. Polarizable-Vacuum (PV) Approach to General Relativity. Found. Phys. 32: 927-943. doi:10.1023/A:1016011413407 http://dx.doi.org/10.1023/A:1016011413407 25. Vlokh R and Kostyrko M, 2005. Estimation of the Birefringence Change in Crystals Induced by Gravitation Field. Ukr. J. Phys. Opt. 6: 125-127. doi:10.3116/16091833/6/4/125/2005 http://dx.doi.org/10.3116/16091833/6/4/125/2005 26. Boonserm P, Cattoen C, Faber T, Visser M and Weinfurtner S, 2005. Effective Refractive Index Tensor for Weak-Field Gravity Class. Quant. Grav. 22: 1905. doi:10.1088/0264-9381/22/11/001 http://dx.doi.org/10.1088/0264-9381/22/11/001 27. Vlokh R and Kostyrko M, 2006. Comment on “Effective Refractive Index Tensor for Weak-Field Gravity” by P. Boonserm, C. Cattoen, T. Faber, M. Visser and S. Weinfurtner. Ukr. J. Phys. Opt. 7: 147. doi:10.3116/16091833/7/3/147/2006 http://dx.doi.org/10.3116/16091833/7/3/147/2006 28.Savchenko AYu and Zel’dovich B Ya, 1994. Birefringence by a smoothly inhomogeneous locally isotropic medium: Three-dimensional case. Phys. Rev. E. 50: 2287-2292. 29.Vlokh R, 1991. Nonlinear medium polarization with account of gradient invariants. Phys. Stat. Sol. (b) 168: K47-K50. 30. Nordtvedt K, 2003. dG/dt measurement and the timing of lunar laser ranging observations. Class. Quant. Grav. 20: L147-L154. 31. Mansouri R, Nasseri F and Khorrami M, 1999. Effective time variation of universe with variable space dimension A 259 194: gr-qc/9905052. 32. Bronnikov KA, Kononogov SA and Melnikov VN, 2006. Brane world corrections to Newton’s law. Gen. Relativ. Gravit. 38: 1215-1232. 33.Will CM, 1971. Relativistic gravity in the Solar system. II. Anisotropy in the Newtonian gravitation constant. Astrophys. J. 169: 141-155. doi:10.1086/151125 http://dx.doi.org/10.1086/151125 34. Quinn TJ, Speake CC, Richman SJ, Davis RS and Picard A, 2001. A New Determination of G Using Two Methods. Phys. Rev. Lett. 87: 111101-111105. doi:10.1103/PhysRevLett.87.111101 http://dx.doi.org/10.1103/PhysRevLett.87.111101 35. Anderson JD, Laing PA, Lau EL, Liu AS, Nieto MM and Turyshev SG, 1998. Indication, from Pioneer 10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration. Phys. Rev. Lett. 81: 2858-2861. doi:10.1103/PhysRevLett.81.2858 http://dx.doi.org/10.1103/PhysRevLett.81.2858 36. Fliche HH, Souriau JM and Triay R, 2006. Anisotropic Hubble expansion of large scale structures. Gen. Relativ. Gravit. 38(3): 463-474. 37.Gantmacher F.R. Theory of matrices. Moscow: Nauka (1988). 38. Einstein A, 1945. Generalisation of the relativistic theory of gravitation. Ann. Math. 46: 578-584. doi:10.2307/1969197 http://dx.doi.org/10.2307/1969197 39. Einstein A and Kaufmann B, 1955. A new form of the general relativistic field equations Ann. Math. 62: 128-138. doi:10.2307/2007103 http://dx.doi.org/10.2307/2007103 |