Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Correlation- and singular-optical approaches in diagnostics of polarization inhomogeneity of coherent optical fields from biological tissues 
Angelsky O.V., Ushenko A.G., Angelska A.O., Ushenko Yu.A.

Chernivtsi National University, 2 Kotsyubinsky St., 58012 Chernivtsi, Ukraine

download full version

The paper presents results related to the correlation structure of polarization images of biological tissues. The technique for measuring coordinate distribution of the degree of mutual polarization has been proposed. The topological (singular) description of polarization-inhomogeneous images of biological tissues has been analyzed. It has been shown that the average statistical size of the S-contour correlates with the half-width of autocorrelation function for the coordinate distribution of the mutual polarization degree.

Keywords: polarization singularity, scattering, biological tissue, polarization, birefringence

PACS: 42.25.Ja, 42.25.Lc, 47.63.Jd, 42.25.Fx
Ukr. J. Phys. Opt. 8 105-123 
doi: 10.3116/16091833/8/2/106/2007
Received: 09.04.2007
 

REFERENCES

1. Stokes GG, 1852. On the composition and resolution of streams of polarized light from different sources. Trans. Cambridge Phil. Soc. 9: 399.
2. Born M. and Wolf E. Principles of optics. New York: Cambridge University Press (1999).
3. Ushenko A.G. and Pishak V.P., Laser Polarimetry of Biological Tissue. Principles and Applications. In Coherent-Domain Optical Methods. Biomedical Diagnostics, Environmental and Material Science (V. Tuchin, ed.). Kluwer Academic Publishers. 93-136 (2004).
4. Gori F, 1998. Matrix treatment for partially polarized, partially coherent beams. Opt. Lett. 23: 241-243.
5. Ellis J and Dogariu A, 2004. Complex degree of mutual polarization. Opt. Lett. 29: 536-538.
        doi:10.1364/OL.29.000536  http://dx.doi.org/10.1364/OL.29.000536
6. Benoit B. Mandelbrot. The Fractal Geometry of Nature. San Francisko: Freeman (1982).
7. Angelsky OV, Tomka YuYa, Ushenko AG, Ushenko YeG and Ushenko YuA, 2005. Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states. J. Phys. D Appl. Phys. 38: 4227-4235.
        doi:10.1088/0022-3727/38/23/014  http://dx.doi.org/10.1088/0022-3727/38/23/014
8. Mokhun I.I. Introduction to linear singular optics. In Correlation Optics: Application and Techniques (Ed. by O.V. Angelsky). SPIE Press, will be published.
9. Berry MV and Dennis MR, 2001. Polarization singularities in isotropic random vector waves. Proc. Roy. Soc. A457: 141-155.
10. Dolgov AD, Doroshkevich AG, Novikov DI and Novikov ID, 1999. Classification of singular points in the polarization of the cosmic microwave background and eigenvectors of the Stokes matrix. JETP Lett. 69: 427-433.
        doi:10.1134/1.568046  http://dx.doi.org/10.1134/1.568046
11. Konukhov AI and Melnikov LA, 2001. Optical vortices in a vector fields: the general definition based on the analogy with topological solitons in a 2D ferromagnet, and examples from the polarization transverse patterns in a laser. J. Opt. B: Quantum Semiclass. Opt. 3: S139-S144.
        doi:10.1088/1464-4266/3/2/358  http://dx.doi.org/10.1088/1464-4266/3/2/358
12. Freund I, 2001. Poincare vortices. Opt. Lett. 26: 1996-1998.
13. Nye JF, 1983. Lines of circular polarization in electromagnetic wave fields. Proc. Roy. Soc. A389: 279-290.
14. Freund I, 2004. Coherency matrix description of optical polarization singularities. J. Opt. A.: Pure and Appl. Opt. 6: S229-S234.
        doi:10.1088/1464-4258/6/5/015  http://dx.doi.org/10.1088/1464-4258/6/5/015
15. Angelsky OV, Mokhun II, Mokhun AI and Soskin MS, 2002. Interferometric methods in diagnostics of polarization singularities. Phys. Rev. E. 65: 036602.
        doi:10.1103/PhysRevE.65.036602  http://dx.doi.org/10.1103/PhysRevE.65.036602
16. Angelsky OV, Mokhun A, Mokhun I and Soskin M, 2002. The relationship between topological characteristics of component vortices and polarization singularities. Opt. Com. 207: 57-65.
        doi:10.1016/S0030-4018(02)01479-7  http://dx.doi.org/10.1016/S0030-4018(02)01479-7
17. Angelsky OV, Ushenko AG, Ermolenko SB, Burcovets DN, Pishak VP and Ushenko YuA, 2000. Polarization-Based Visualization of Multifractal Structures for the Diagnostics of Pathological Changes in Biological Tissues. Opt. Spectr. 89: 799-804.
        doi:10.1134/1.1328141  http://dx.doi.org/10.1134/1.1328141
18. Angelsky OV, Demyanovsky GV, Ushenko AG, Burcovets DN and Ushenko YuA, 2004. Wavelet analysis of two-dimensional birefringence images of architectonics in biotissues for diagnosing pathological changes. J. Biomed. Opt. 9: 679-690.
        doi:10.1117/1.1755720  http://dx.doi.org/10.1117/1.1755720
19. Angelsky OV, Ushenko AG, Burcovets DN and Ushenko YuA, 2005. Polarization visualization and selection of biotissue image two-layer scattering medium. J. Biomed. Opt. 10: 014010.
        doi:10.1117/1.1854674  http://dx.doi.org/10.1117/1.1854674
20. Angelsky OV, Ushenko AG and Ushenko YuA, 2005. Polarization reconstruction of orientation structure of biological tissues birefringent architectonic nets by using their Mueller-matrix speckle-images. J. Holography Speckle 2: 72-79.
        doi:10.1166/jhs.2005.013  http://dx.doi.org/10.1166/jhs.2005.013
21. Angelsky OV, Ushenko AG, Ushenko YuA, Ushenko YeG, Tomka YuYa, and Pishak VP, 2005. Polarization-correlation mapping of biological tissue coherent images. J. Biomed. Opt. 10: 064025.
        doi:10.1117/1.2148251  http://dx.doi.org/10.1117/1.2148251

(c) Ukrainian Journal of Physical Optics