Home
page
Other articles
in this issue |
Correlation- and
singular-optical approaches in diagnostics of polarization inhomogeneity
of coherent optical fields from biological tissues
Angelsky O.V., Ushenko A.G., Angelska A.O.,
Ushenko Yu.A.
Chernivtsi National University, 2 Kotsyubinsky St., 58012
Chernivtsi, Ukraine
download full version
The paper presents results related to the correlation structure of polarization
images of biological tissues. The technique for measuring coordinate distribution
of the degree of mutual polarization has been proposed. The topological
(singular) description of polarization-inhomogeneous images of biological
tissues has been analyzed. It has been shown that the average statistical
size of the S-contour correlates with the half-width of autocorrelation
function for the coordinate distribution of the mutual polarization degree.
Keywords: polarization singularity, scattering,
biological tissue, polarization, birefringence
PACS: 42.25.Ja, 42.25.Lc, 47.63.Jd, 42.25.Fx
Ukr. J. Phys. Opt.
8 105-123
doi: 10.3116/16091833/8/2/106/2007
Received: 09.04.2007
|
|
REFERENCES
1. Stokes GG, 1852. On the composition and resolution of streams of
polarized light from different sources. Trans. Cambridge Phil. Soc. 9:
399.
2. Born M. and Wolf E. Principles of optics. New York: Cambridge University
Press (1999).
3. Ushenko A.G. and Pishak V.P., Laser Polarimetry of Biological Tissue.
Principles and Applications. In Coherent-Domain Optical Methods. Biomedical
Diagnostics, Environmental and Material Science (V. Tuchin, ed.). Kluwer
Academic Publishers. 93-136 (2004).
4. Gori F, 1998. Matrix treatment for partially polarized, partially
coherent beams. Opt. Lett. 23: 241-243.
5. Ellis J and Dogariu A, 2004. Complex degree of mutual polarization.
Opt. Lett. 29: 536-538.
doi:10.1364/OL.29.000536
http://dx.doi.org/10.1364/OL.29.000536
6. Benoit B. Mandelbrot. The Fractal Geometry of Nature. San Francisko:
Freeman (1982).
7. Angelsky OV, Tomka YuYa, Ushenko AG, Ushenko YeG and Ushenko YuA,
2005. Investigation of 2D Mueller matrix structure of biological tissues
for pre-clinical diagnostics of their pathological states. J. Phys. D Appl.
Phys. 38: 4227-4235.
doi:10.1088/0022-3727/38/23/014
http://dx.doi.org/10.1088/0022-3727/38/23/014
8. Mokhun I.I. Introduction to linear singular optics. In Correlation
Optics: Application and Techniques (Ed. by O.V. Angelsky). SPIE Press,
will be published.
9. Berry MV and Dennis MR, 2001. Polarization singularities in isotropic
random vector waves. Proc. Roy. Soc. A457: 141-155.
10. Dolgov AD, Doroshkevich AG, Novikov DI and Novikov ID, 1999. Classification
of singular points in the polarization of the cosmic microwave background
and eigenvectors of the Stokes matrix. JETP Lett. 69: 427-433.
doi:10.1134/1.568046
http://dx.doi.org/10.1134/1.568046
11. Konukhov AI and Melnikov LA, 2001. Optical vortices in a vector
fields: the general definition based on the analogy with topological solitons
in a 2D ferromagnet, and examples from the polarization transverse patterns
in a laser. J. Opt. B: Quantum Semiclass. Opt. 3: S139-S144.
doi:10.1088/1464-4266/3/2/358
http://dx.doi.org/10.1088/1464-4266/3/2/358
12. Freund I, 2001. Poincare vortices. Opt. Lett. 26: 1996-1998.
13. Nye JF, 1983. Lines of circular polarization in electromagnetic
wave fields. Proc. Roy. Soc. A389: 279-290.
14. Freund I, 2004. Coherency matrix description of optical polarization
singularities. J. Opt. A.: Pure and Appl. Opt. 6: S229-S234.
doi:10.1088/1464-4258/6/5/015
http://dx.doi.org/10.1088/1464-4258/6/5/015
15. Angelsky OV, Mokhun II, Mokhun AI and Soskin MS, 2002. Interferometric
methods in diagnostics of polarization singularities. Phys. Rev. E. 65:
036602.
doi:10.1103/PhysRevE.65.036602
http://dx.doi.org/10.1103/PhysRevE.65.036602
16. Angelsky OV, Mokhun A, Mokhun I and Soskin M, 2002. The relationship
between topological characteristics of component vortices and polarization
singularities. Opt. Com. 207: 57-65.
doi:10.1016/S0030-4018(02)01479-7
http://dx.doi.org/10.1016/S0030-4018(02)01479-7
17. Angelsky OV, Ushenko AG, Ermolenko SB, Burcovets DN, Pishak VP
and Ushenko YuA, 2000. Polarization-Based Visualization of Multifractal
Structures for the Diagnostics of Pathological Changes in Biological Tissues.
Opt. Spectr. 89: 799-804.
doi:10.1134/1.1328141
http://dx.doi.org/10.1134/1.1328141
18. Angelsky OV, Demyanovsky GV, Ushenko AG, Burcovets DN and Ushenko
YuA, 2004. Wavelet analysis of two-dimensional birefringence images of
architectonics in biotissues for diagnosing pathological changes. J. Biomed.
Opt. 9: 679-690.
doi:10.1117/1.1755720
http://dx.doi.org/10.1117/1.1755720
19. Angelsky OV, Ushenko AG, Burcovets DN and Ushenko YuA, 2005. Polarization
visualization and selection of biotissue image two-layer scattering medium.
J. Biomed. Opt. 10: 014010.
doi:10.1117/1.1854674
http://dx.doi.org/10.1117/1.1854674
20. Angelsky OV, Ushenko AG and Ushenko YuA, 2005. Polarization reconstruction
of orientation structure of biological tissues birefringent architectonic
nets by using their Mueller-matrix speckle-images. J. Holography Speckle
2: 72-79.
doi:10.1166/jhs.2005.013
http://dx.doi.org/10.1166/jhs.2005.013
21. Angelsky OV, Ushenko AG, Ushenko YuA, Ushenko YeG, Tomka YuYa,
and Pishak VP, 2005. Polarization-correlation mapping of biological tissue
coherent images. J. Biomed. Opt. 10: 064025.
doi:10.1117/1.2148251
http://dx.doi.org/10.1117/1.2148251
(c) Ukrainian Journal
of Physical Optics |