Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Light-induced Freedericksz transition and optical multistability in nematic liquid crystals
Miroshnichenko A.E., Pinkevych I., Kivshar Yu.S.

Nonlinear Physics Centre and Centre for Ultra-High Bandwidth Devices for Optical Systems (CUDOS), Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia

download full version

We revisit the problem of light transmission through a slab of homeotropically oriented nematic liquid crystal and solve self-consistently a system of coupled nonlinear equations describing orientation of the nematic director in the slab and the Maxwell equation for the electric field. We demonstrate that optical transmission of the slab as a function of input power shows a multistable hysteresis-like behaviour. We suggest that this multistability can be useful for creating tunable all-optical switching devices based on the liquid-crystal infiltration of photonic crystals.

Keywords: optical Freedericksz transition, liquid crystal, optical bistability

PACS: 42.25, 42.65.- k, 42.70.Df, 64.70.Md
Ukr. J. Phys. Opt. 8 61-68   doi: 10.3116/16091833/8/2/61/2007
Received: 16.02.2007
 

REFERENCES

1. Blinov L.M. and Chigrinov V.G. Electro-Optics Effects in Liquid Crystal Materials. New York: Springer (1994).
2. Khoo I.C. Liquid Crystals: Physical Properties and Optical Phenomena. New York: Wiley & Sons (1994).
3. Busch K and John S, 1999. Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum. Phys. Rev. Lett. 83: 967–970.
        doi:10.1103/PhysRevLett.83.967 http://dx.doi.org/10.1103/PhysRevLett.83.967
4. Yoshino K, Shimoda Y, Kawagishi K, Nakayama K and Ozaki M, 1999. Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal. Appl. Phys. Lett. 75: 932–934.
        doi:10.1063/1.124558 http://dx.doi.org/10.1063/1.124558
5. Simoni F. Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals. New Jersey: World Scientific (1997).
6. Zolot'ko A S, Kitaeva V F, Kroo N, Sobolev N N and Csillag L, 1980. The effect of an optical field on the nematic phase of the liquid crystal OCBP. JETP Lett. 32: 158–162.
7. Zel'dovich BYa, Tabiryan N V and Chilingaryan Yu S, 1981. Freedericksz transition induced by light fields. JETP 81: 72–83.
8. Khoo I C, 1981. Optically induced molecular reorientation and third order nonlinear processes in nematic liquid crystals. Phys. Rev. A 23: 2077–2081.
        doi:10.1103/PhysRevA.23.2077 http://dx.doi.org/10.1103/PhysRevA.23.2077
9. Durbin S D, Arakelian S M and Shen Y R, 1981. Optical-Field-Induced Birefringence and Freedericksz Transition in a Nematic Liquid Crystal. Phys. Rev. Lett. 47: 1411–1414.
        doi:10.1103/PhysRevLett.47.1411 http://dx.doi.org/10.1103/PhysRevLett.47.1411
10. Ong H L, 1983. Optically induced Freedericksz transition and bistability in a nematic liquid crystal. Phys. Rev. A 28: 2393–2407.
        doi:10.1103/PhysRevA.28.2393 http://dx.doi.org/10.1103/PhysRevA.28.2393
11. Hakopyan R S, Tabiryan N V and Zeldovich B Ya, 1983. Freedericksz transition in a nematic liquid crystal under the action of the field of the standing light wave. Opt. Commun. 46: 249–252.
        doi:10.1016/0030-4018(83)90288-2 http://dx.doi.org/10.1016/0030-4018(83)90288-2
12. Khoo I C, Hou J Y, Normandin R and So V C Y, 1983. Theory and experiment on optical bistability in a Fabry-Perot interferometer with an intracavity nematic liquid-crystal film. Phys. Rev. A 27: 3251–3257.
        doi:10.1103/PhysRevA.27.3251 http://dx.doi.org/10.1103/PhysRevA.27.3251
13. Cheung M-M, Durbin S D and Shen Y R, 1983. Optical bistability and self-oscillation of a nonlinear Fabry-Perot interferometer filled with a nematic-liquid-crystal film. Opt. Lett. 8: 39–41.
14. Marquis F and Meystre P, 1987. Optical bistability near the optical Freedericksz transition. Opt. Commun. 62: 409–412.
        doi:10.1016/0030-4018(87)90009-5 http://dx.doi.org/10.1016/0030-4018(87)90009-5
15. Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P. Numerical Recipes in C++. Cambridge: Cambridge University Press Cambridge (2002).
16. Abbate G, Maddalena P, Marrucci L, Saetta L and Santamato E, 1991. Mutistability and nonlinear dynamics of the optical Freedericksz transition in homeotropically aligned nematics. J. Physique II 1: 543–557.
        doi:10.1051/jp2:1991188 http://dx.doi.org/10.1051/jp2:1991188
17. Ilyina V, Cox S J and Sluckin T J, 2006. A computational approach to the optical Freedericksz transition. Opt. Communications 260: 474–480.
        doi:10.1016/j.optcom.2005.11.028 http://dx.doi.org/10.1016/j.optcom.2005.11.028
18. Miroshnichenko A E, Pinkevych I and Kivshar Yu S, 2006. Tunable all-optical switching in periodic structures with liquid-crystal defects. Opt. Express 14: 2839–2844.
        doi:10.1364/OE.14.002839 http://dx.doi.org/10.1364/OE.14.002839

(c) Ukrainian Journal of Physical Optics