Home
page
Other articles
in this issue |
Light-induced Freedericksz
transition and optical multistability in nematic liquid crystals
Miroshnichenko A.E., Pinkevych I., Kivshar
Yu.S.
Nonlinear Physics Centre and Centre for Ultra-High Bandwidth
Devices for Optical Systems (CUDOS), Research School of Physical Sciences
and Engineering, Australian National University, Canberra ACT 0200, Australia
download full version
We revisit the problem of light transmission through a slab of homeotropically
oriented nematic liquid crystal and solve self-consistently a system of
coupled nonlinear equations describing orientation of the nematic director
in the slab and the Maxwell equation for the electric field. We demonstrate
that optical transmission of the slab as a function of input power shows
a multistable hysteresis-like behaviour. We suggest that this multistability
can be useful for creating tunable all-optical switching devices based
on the liquid-crystal infiltration of photonic crystals.
Keywords: optical Freedericksz transition,
liquid crystal, optical bistability
PACS: 42.25, 42.65.- k, 42.70.Df, 64.70.Md
Ukr. J. Phys. Opt.
8 61-68 doi: 10.3116/16091833/8/2/61/2007
Received: 16.02.2007
|
|
REFERENCES
1. Blinov L.M. and Chigrinov V.G. Electro-Optics Effects in Liquid Crystal
Materials. New York: Springer (1994).
2. Khoo I.C. Liquid Crystals: Physical Properties and Optical Phenomena.
New York: Wiley & Sons (1994).
3. Busch K and John S, 1999. Liquid-crystal photonic-band-gap materials:
The tunable electromagnetic vacuum. Phys. Rev. Lett. 83: 967–970.
doi:10.1103/PhysRevLett.83.967
http://dx.doi.org/10.1103/PhysRevLett.83.967
4. Yoshino K, Shimoda Y, Kawagishi K, Nakayama K and Ozaki M, 1999.
Temperature tuning of the stop band in transmission spectra of liquid-crystal
infiltrated synthetic opal as tunable photonic crystal. Appl. Phys. Lett.
75: 932–934.
doi:10.1063/1.124558
http://dx.doi.org/10.1063/1.124558
5. Simoni F. Nonlinear Optical Properties of Liquid Crystals and Polymer
Dispersed Liquid Crystals. New Jersey: World Scientific (1997).
6. Zolot'ko A S, Kitaeva V F, Kroo N, Sobolev N N and Csillag L, 1980.
The effect of an optical field on the nematic phase of the liquid crystal
OCBP. JETP Lett. 32: 158–162.
7. Zel'dovich BYa, Tabiryan N V and Chilingaryan Yu S, 1981. Freedericksz
transition induced by light fields. JETP 81: 72–83.
8. Khoo I C, 1981. Optically induced molecular reorientation and third
order nonlinear processes in nematic liquid crystals. Phys. Rev. A 23:
2077–2081.
doi:10.1103/PhysRevA.23.2077
http://dx.doi.org/10.1103/PhysRevA.23.2077
9. Durbin S D, Arakelian S M and Shen Y R, 1981. Optical-Field-Induced
Birefringence and Freedericksz Transition in a Nematic Liquid Crystal.
Phys. Rev. Lett. 47: 1411–1414.
doi:10.1103/PhysRevLett.47.1411
http://dx.doi.org/10.1103/PhysRevLett.47.1411
10. Ong H L, 1983. Optically induced Freedericksz transition and bistability
in a nematic liquid crystal. Phys. Rev. A 28: 2393–2407.
doi:10.1103/PhysRevA.28.2393
http://dx.doi.org/10.1103/PhysRevA.28.2393
11. Hakopyan R S, Tabiryan N V and Zeldovich B Ya, 1983. Freedericksz
transition in a nematic liquid crystal under the action of the field of
the standing light wave. Opt. Commun. 46: 249–252.
doi:10.1016/0030-4018(83)90288-2
http://dx.doi.org/10.1016/0030-4018(83)90288-2
12. Khoo I C, Hou J Y, Normandin R and So V C Y, 1983. Theory and experiment
on optical bistability in a Fabry-Perot interferometer with an intracavity
nematic liquid-crystal film. Phys. Rev. A 27: 3251–3257.
doi:10.1103/PhysRevA.27.3251
http://dx.doi.org/10.1103/PhysRevA.27.3251
13. Cheung M-M, Durbin S D and Shen Y R, 1983. Optical bistability
and self-oscillation of a nonlinear Fabry-Perot interferometer filled with
a nematic-liquid-crystal film. Opt. Lett. 8: 39–41.
14. Marquis F and Meystre P, 1987. Optical bistability near the optical
Freedericksz transition. Opt. Commun. 62: 409–412.
doi:10.1016/0030-4018(87)90009-5
http://dx.doi.org/10.1016/0030-4018(87)90009-5
15. Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P. Numerical
Recipes in C++. Cambridge: Cambridge University Press Cambridge (2002).
16. Abbate G, Maddalena P, Marrucci L, Saetta L and Santamato E, 1991.
Mutistability and nonlinear dynamics of the optical Freedericksz transition
in homeotropically aligned nematics. J. Physique II 1: 543–557.
doi:10.1051/jp2:1991188
http://dx.doi.org/10.1051/jp2:1991188
17. Ilyina V, Cox S J and Sluckin T J, 2006. A computational approach
to the optical Freedericksz transition. Opt. Communications 260: 474–480.
doi:10.1016/j.optcom.2005.11.028
http://dx.doi.org/10.1016/j.optcom.2005.11.028
18. Miroshnichenko A E, Pinkevych I and Kivshar Yu S, 2006. Tunable
all-optical switching in periodic structures with liquid-crystal defects.
Opt. Express 14: 2839–2844.
doi:10.1364/OE.14.002839
http://dx.doi.org/10.1364/OE.14.002839
(c) Ukrainian Journal
of Physical Optics |