Ukrainian Journal of Physical Optics 


Number  2, Volume 6,  2005

Home page
 
 

Other articles 
in this issue


Radiation Anisotropy and Ordering Effects Inherent to Quantum Dots and Wires in (In,Ga)As/GaAs Nanostructures
1Strelchuk V.V., 1Lytvyn P.M., 1Kolomys A.F., 1Lysytsya M.P., 1Valakh M.Ya., 2Mazur Yu.I., 2Wang Z.M., 2Salamo G.J.

1V.Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 03028 Kyiv, Ukraine, 
2Department of Physics, University of Arkansas, Fayetteville, Arkansas, 72701

download full version

Atomic force microscopy and polarised luminescence is used for studying interrelations between the surface morphology and the optical properties of multilayer (In,Ga)As/GaAs(100) nanostructures grown with molecular-beam epitaxy technique, which possess self-organised quantum dots and quantum wires. With increasing number of periods in the structure, aligning of the quantum dots in rows parallel to the crystal direction   is observed. The improvement of lateral ordering correlates with increasing radiation anisotropy of the structure. A possible ordering mechanism is discussed.

Key words: quantum dot, quantum wire, polarization photoluminescence, AFM.

PACS: 61.10.Kw, 68.37.Ps, 68.49.Uv, 68.65.Ac, 68.66.Hb, 78.30.Fs, 78.55.Cr

doi 10.3116/16091833/6/2/78/2005
 

1. Tersoff J, Teichert C, Lagally MG, 1996. Phys. Rev. Lett. 76: 1675.
        doi:10.1103/PhysRevLett.76.1675  http://dx.doi.org/10.1103/PhysRevLett.76.1675
2. Xie Q, Madhukar A, Chen P, Kobayashi N, 1995. Phys. Rev. Lett. 75: 2542.
        doi:10.1103/PhysRevLett.75.2542  http://dx.doi.org/10.1103/PhysRevLett.75.2542
3. Holy V. Springholz G, Pinczolits M, Bauer G, 1999. Phys. Rev. Lett. 83: 356.
        doi:10.1103/PhysRevLett.83.356  http://dx.doi.org/10.1103/PhysRevLett.83.356
4. Quek SS, Liu GR, 2003. Nanotechnology 14: 752.
        doi:10.1088/0957-4484/14/7/311  http://dx.doi.org/10.1088/0957-4484/14/7/311
5. Wang X-D, Liu N, Shih CK, Govindaraju S, Holmes AL, 2004. Appl. Phys. Lett. 85: 1356.
        doi:10.1063/1.1784526  http://dx.doi.org/10.1063/1.1784526
6. Springholtz G, Holy V, Pinczolits M, Bauer G, 1998. Science 282: 734.
        doi:10.1126/science.282.5389.734  http://dx.doi.org/10.1126/science.282.5389.734
7. Meixner M, Schöll E, Schmidbauer M, Raidt H, Köhler R, 2001. Phys. Rev. B 64: 245307.
        doi:10.1103/PhysRevB.64.245307  http://dx.doi.org/10.1103/PhysRevB.64.245307
8. Zhang K, Heyn Ch, Hansen W, Schmidt Th, Falta J, 2000. Appl. Phys. Lett. 76: 2229.
        doi:10.1063/1.126305  http://dx.doi.org/10.1063/1.126305
9. Wang ZhM, Holmes K, Mazur YuI, Salamo GJ, 2004. Appl. Phys. Lett. 84: 1931.
10. Mano T, Nötzel R, Hamhuis GJ, Eijkemans TJ, Wolter JH, 2004. J. Appl. Phys. 85: 109.
        doi:10.1063/1.1631069  http://dx.doi.org/10.1063/1.1631069
11. Saito H, Nishi K, Sugou S, Sugimoto Y, 1997. Appl. Phys. Lett. 71: 590.
        doi:10.1063/1.119802  http://dx.doi.org/10.1063/1.119802

Home | Instructions to Authors | Editorial Board | Meetings & Exhibitions