Ukrainian Journal of Physical Optics 


Number  2, Volume 6,  2005

Home page
 
 

Other articles 
in this issue


Thermally Stimulated Luminescence of Radiation-Induced Defects in the Glasses of CaO-Ga2O3-GeO2 System
1,2Padlyak B., 1Vlokh O., 3Jungner H.

1Institute of Physical Optics, 23 Dragomanov Str., 79-005 L’viv, Ukraine, 
2Department of Physics, Academy of Bydgoszcz, 11  Weyssenhoff Sq., 85-072 Bydgoszcz, 85-072, Poland
3Dating Laboratory, University of Helsinki, POB 64, Helsinki, Finland

download full version

Thermally stimulated luminescence (TSL) and electron spin resonance (ESR) spectra of X-, g- and b-irradiated glasses with garnet (Ca3Ga2Ge3O12), Ca-gallogermanate (Ca3Ga2Ge4O14) and Ca3Ga2O6 compositions have been investigated and analysed. X- and g-irradiation of the Ge-containing glasses induces simultaneously electron and hole paramagnetic defects, stable at room temperature, whereas the same irradiation of glasses with Ca3Ga2O6 composition yields only in stable hole paramagnetic defects. The electron defects are assigned to ensembles of E` (Ge) centres with different local environments. The hole defects belong to ensembles of O- centres, localised at different non-bridging oxygens of the glass network. The pronounced TSL glow curves in the g- and X-irradiated Ge-containing glasses peaked at about 280 C are attributed to recombination of the E` (Ge) centres. The TSL glow curves with the maximum near 230 C in the g- and X-irradiated Ge-containing glasses and the glass and ceramics with Ca3Ga2O6 composition are related to recombination of the O- centres. The TSL glow curve peaked in the vicinity of 380 C observed in the g- and X-irradiated glasses with Ca3Ga2O6 composition could be assigned to recombin-ation of non-paramagnetic defects. No TSL glow curves are observed in the b-irradiated Ge-containing glasses, whereas the TSL glow curves with the maxima at about 120, 220 and 380 C are peculiar for the glass and ceramics with Ca3Ga2O6 composition. The activation energy for the b-induced defects is estimated and their models are discussed.

Keywords: CaO-Ga2O3-GeO2 glasses, radiation-induced defects, TSL, ESR, E` (Ge) centre, O- centre

PACS: 42.70.Ce, 78.60.Kn, 76.30.Mi

doi 10.3116/16091833/6/2/55/2005

1. Damen JPM, Pistorius JA, Robertson JM, 1977. Mater. Res. Bull. 12: 73.
        doi:10.1016/0025-5408(77)90090-3  http://dx.doi.org/10.1016/0025-5408(77)90090-3
2. Mill BV, Butashin AV, Ellern AM, Majer AA, 1981. Izv. Akad. Nauk SSSR, Ser. Neorgan. Mater. 17: 1648.
3. Kaminskii AA, Mill BV, Butashin AV, 1983. Izv. Akad. Nauk SSSR, Ser. Neorgan. Mater. 19: 2056.
4. Vlokh OG, Nosenko AE, Gamernyk RV, Bily AI, 1984. Kristallografia, 29: 800.
5. Jeevaratnam J, Glasser FP, 1961. J. Amer. Ceram. Soc. 44: 5630.
        doi:10.1111/j.1151-2916.1961.tb11658.x  http://dx.doi.org/10.1111/j.1151-2916.1961.tb11658.x
6. Padlyak BV, Buchynskii PP, October 30, 1998. Patent of Ukraine, No. UA 25235 A.
7. Padlyak B, Mudry S, Halchak V, Korolyshyn A, Rybicki J, Witkowska A, 2000. Opt. Appl. XXX: 691.
8. Che?stowski D, Witkowska A, Rybicki J, Padlyak B, Trapananti A, Principi E, 2003. Opt. Appl. XXXIII: 125.
9. Nosenko AE, Padlyak BV, 1989. Fiz. Tverd. Tela 39: 1044.
10. Nosenko AE, Leshchuk RYe, Padlyak BV, Sel’skii AA, 1997. Fiz. Tverd. Tela 39: 1044.
11. Nosenko AE, Leshchuk RYe, Padlyak BV, Sel’skii AA, 1997. Sov. Phys.: Solid State 39: 938.
        doi:10.1134/1.1130148  http://dx.doi.org/10.1134/1.1130148
12. Padlyak BV, Bordun OM, Buchynskii PP, 1998. Acta Phys. Pol. A 95: 921.
13. Padlyak BV, 2003. Radiation Effects and Defects in Solids 158: 411.
        doi:10.1080/1042015021000052953  http://dx.doi.org/10.1080/1042015021000052953
14. Padlyak BV, Kukli?ski B, 2004. Radiat. Meas. 38: 593.
        doi:10.1016/j.radmeas.2004.02.013  http://dx.doi.org/10.1016/j.radmeas.2004.02.013
15. Padlyak BV, Jungner H, July 11-16, 2004 Riga (Latvia). Book of Abstracts of 15th Conf. on Defects in Insulating Materials (ICDIM-2004), WE-A-08: 27.

Home | Instructions to Authors | Editorial Board | Meetings & Exhibitions