Home
page
Other articles
in this issue
|
Thermally Stimulated
Luminescence of Radiation-Induced Defects in the Glasses of CaO-Ga2O3-GeO2
System
1,2Padlyak B., 1Vlokh O., 3Jungner
H.
1Institute of Physical Optics, 23 Dragomanov
Str., 79-005 L’viv, Ukraine,
2Department of Physics, Academy of
Bydgoszcz, 11 Weyssenhoff Sq., 85-072 Bydgoszcz, 85-072, Poland
3Dating Laboratory, University of Helsinki,
POB 64, Helsinki, Finland
download full version
Thermally stimulated luminescence (TSL) and electron spin resonance
(ESR) spectra of X-, g- and b-irradiated
glasses with garnet (Ca3Ga2Ge3O12), Ca-gallogermanate (Ca3Ga2Ge4O14) and
Ca3Ga2O6 compositions have been investigated and analysed. X- and g-irradiation
of the Ge-containing glasses induces simultaneously electron and hole paramagnetic
defects, stable at room temperature, whereas the same irradiation of glasses
with Ca3Ga2O6 composition yields only in stable hole paramagnetic defects.
The electron defects are assigned to ensembles of E` (Ge) centres with
different local environments. The hole defects belong to ensembles of O-
centres, localised at different non-bridging oxygens of the glass network.
The pronounced TSL glow curves in the g- and
X-irradiated Ge-containing glasses peaked at about 280 C are attributed
to recombination of the E` (Ge) centres. The TSL glow curves with the maximum
near 230 C in the g- and X-irradiated Ge-containing
glasses and the glass and ceramics with Ca3Ga2O6 composition are related
to recombination of the O- centres. The TSL glow curve peaked in the vicinity
of 380 C observed in the g- and X-irradiated
glasses with Ca3Ga2O6 composition could be assigned to recombin-ation of
non-paramagnetic defects. No TSL glow curves are observed in the b-irradiated
Ge-containing glasses, whereas the TSL glow curves with the maxima at about
120, 220 and 380 C are peculiar for the glass and ceramics with Ca3Ga2O6
composition. The activation energy for the b-induced
defects is estimated and their models are discussed.
Keywords: CaO-Ga2O3-GeO2 glasses, radiation-induced defects, TSL,
ESR, E` (Ge) centre, O- centre
PACS: 42.70.Ce, 78.60.Kn, 76.30.Mi
doi 10.3116/16091833/6/2/55/2005 |
|
1. Damen JPM, Pistorius JA, Robertson JM, 1977. Mater. Res. Bull. 12: 73.
doi:10.1016/0025-5408(77)90090-3
http://dx.doi.org/10.1016/0025-5408(77)90090-3
2. Mill BV, Butashin AV, Ellern AM, Majer AA, 1981. Izv. Akad. Nauk
SSSR, Ser. Neorgan. Mater. 17: 1648.
3. Kaminskii AA, Mill BV, Butashin AV, 1983. Izv. Akad. Nauk SSSR,
Ser. Neorgan. Mater. 19: 2056.
4. Vlokh OG, Nosenko AE, Gamernyk RV, Bily AI, 1984. Kristallografia,
29: 800.
5. Jeevaratnam J, Glasser FP, 1961. J. Amer. Ceram. Soc. 44: 5630.
doi:10.1111/j.1151-2916.1961.tb11658.x
http://dx.doi.org/10.1111/j.1151-2916.1961.tb11658.x
6. Padlyak BV, Buchynskii PP, October 30, 1998. Patent of Ukraine,
No. UA 25235 A.
7. Padlyak B, Mudry S, Halchak V, Korolyshyn A, Rybicki J, Witkowska
A, 2000. Opt. Appl. XXX: 691.
8. Che?stowski D, Witkowska A, Rybicki J, Padlyak B, Trapananti A,
Principi E, 2003. Opt. Appl. XXXIII: 125.
9. Nosenko AE, Padlyak BV, 1989. Fiz. Tverd. Tela 39: 1044.
10. Nosenko AE, Leshchuk RYe, Padlyak BV, Sel’skii AA, 1997. Fiz. Tverd.
Tela 39: 1044.
11. Nosenko AE, Leshchuk RYe, Padlyak BV, Sel’skii AA, 1997. Sov. Phys.:
Solid State 39: 938.
doi:10.1134/1.1130148
http://dx.doi.org/10.1134/1.1130148
12. Padlyak BV, Bordun OM, Buchynskii PP, 1998. Acta Phys. Pol. A 95:
921.
13. Padlyak BV, 2003. Radiation Effects and Defects in Solids 158:
411.
doi:10.1080/1042015021000052953
http://dx.doi.org/10.1080/1042015021000052953
14. Padlyak BV, Kukli?ski B, 2004. Radiat. Meas. 38: 593.
doi:10.1016/j.radmeas.2004.02.013
http://dx.doi.org/10.1016/j.radmeas.2004.02.013
15. Padlyak BV, Jungner H, July 11-16, 2004 Riga (Latvia). Book of
Abstracts of 15th Conf. on Defects in Insulating Materials (ICDIM-2004),
WE-A-08: 27. |