Ukrainian Journal of Physical Optics 


Number  2, Volume 6,  2005

Home page
 
 

Other articles 
in this issue


Light Scattering in Ionic Conductor Li2B4O7 Crystals in the High-Temperature Region 
1Moiseyenko V.N., 1Dergachov M.P., 2Burak Ya.V.

1Physics Department, Dniepropetrovsk National University, 13 Naukova St., 49050 Dnipropetrovsk, Ukraine
2 Institute of Physical Optics, 23 Dragomanov St., 79005 Lviv, Ukraine

download full version

Isofrequency temperature dependences of Rayleigh and hyper-Rayleigh scattering intensities have been measured in isotopically substituted Li2B4O7 crystals within a wide temperature range (300–1000 K). The dependences contain two anomalies in the vicinities of 520 and 800 K. The first anomaly is associated with hopping of lithium ions between two non-equivalent positions, with the activation energy of about 0.23 eV. The second one results from the first-order order-disorder phase transition due to the melting of lithium sublattice. The temperature dependence of the relaxation time obtained by analysing quasi-elastic light scattering spectra is satisfactorily described, using the theoretical relation typical for such the phase transitions, with the relevant parameters Tc = 790 K and D = 0.95.

Keywords: light scattering, ionic conductivity, phase transition

PACS: 78.35+c

doi 10.3116/16091833/6/2/45/2005

1. Bhalla AS, Cross LE, Whatmore RW, 1985. Jap. J. Appl. Phys. 24: 727.
        doi:10.1143/JJAP.24.L727 http://dx.doi.org/10.1143/JJAP.24.L727
2. Grinyov BV, Dubovik MF, Tolmachev AV, 2000. Semicond. Phys. Quantum Electronics and Optoelectronics 3: 410.
3. Petrov V, Rotermund AF, Noack F, Komatsu R et al., 1998. J. Appl. Phys. 84: 5887.
        doi:10.1063/1.368904; http://dx.doi.org/10.1063/1.368904
4. Sugawara T, Komatsu R, Uda S, 1998. Sol. St. Commun. 107: 233.
        doi:10.1016/S0038-1098(98)00190-2 http://dx.doi.org/10.1016/S0038-1098(98)00190-2
5. Aliev AE, Burak YaV, Lyseiko IT, 1990. Izv. AN SSSR, Ser. Neorg. Mater. 26: 1991.
6. Borman KYa, Burak YaV, 1990. Izv. AN SSSR, Ser. Neorg. Mater. 26: 440.
7. Abdulchalikova NR, Aliev AE, Krivorotov VE, Khabibulaev PK, 1998. Solid St. Ionics 107: 59.
        doi:10.1016/S0167-2738(97)00395-0 http://dx.doi.org/10.1016/S0167-2738(97)00395-0
8. Burak YaV, Gaba VM, Lyseiko IT, Romanyuk NA, Stadnyul VI, 1987. Ukr. J. Phys. 36: 1638.
9. Moiseyenko VN, Vdovin AV, Gorelik VS, Burak YaV, 1998. Short Notes on Physics FIAN 10: 30.
10. Aliev AE, Kholmanov IN, Khabibullaev PK, 1999. Solid St. Ionics 118: 111.
        doi:10.1016/S0167-2738(98)00430-5 http://dx.doi.org/10.1016/S0167-2738(98)00430-5
11. Maeda M, Tachi H, Honda K, Suzuki I, 1994. Jpn. J. Appl. Phys. 33: 1965.
        doi:10.1143/JJAP.33.1965 http://dx.doi.org/10.1143/JJAP.33.1965
12. Furusawa S, Tange S, Ishibashi Y, Miwa K, 1990. J. Phys. Soc. Jap. 59: 2532.
        doi:10.1143/JPSJ.59.2532 http://dx.doi.org/10.1143/JPSJ.59.2532
13. Charnaya EV, 1994. Ferroel. 155: 141.
14. Furusawa S, Chikagawa O, Tange S, Ishidate T, Orihara H, Ishibashi Y, Miwa K, 1991. J. Phys. Soc. Jap. 60: 2691.
        doi:10.1143/JPSJ.60.2691 http://dx.doi.org/10.1143/JPSJ.60.2691
15. Furusawa S, Tange S, Ishibashi Y, Miwa K, 1990. J. Phys. Soc. Jap. 59: 1825.
        doi:10.1143/JPSJ.59.1825 http://dx.doi.org/10.1143/JPSJ.59.1825
16. Aliev AE, Valetov RR, 1992. Fiz. Tverd. Tela 34: 3061.
17. Ishigame M, Shin S, Suemoto T, 1991. Solid St. Ionics 47: 1.
        doi:10.1016/0167-2738(91)90176-C http://dx.doi.org/10.1016/0167-2738(91)90176-C
18. Nak KS, Sung HC, Ae RL, Jung NK, 1995. New Physics (Korean Phys. Soc.) 35: 670.
19. Lines ME, and Glass AM, 1981. Principles and Application of Ferroelectrics and Related Materials. Mir. Moscow: 736.
20. Burak YaV, Tratsh IB, Adamiv VT, Teslyuk IM, 2002. Ukr. J. Phys. 47: 923.

Home | Instructions to Authors | Editorial Board | Meetings & Exhibitions