Ukrainian Journal of Physical Optics 


Number  1, Volume 6,  2005

Home page
 
 

Other articles 
in this issue


Spectroscopy and Luminescence Kinetics of Eu3+, Ho3+ and Er3+ Centres in the Glass With 3CaO-Ga2O3-3GeO2 Composition
1,2Padlyak B., 1Vlokh O., 3Sagoo K.

1Institute of Physical Optics, 23 Dragomanov St., 79005 Lviv, Ukraine 
2Department of Physics, Academy of Bydgoszcz, 11 Weyssenhoff Sq., 85-072 Bydgoszcz, Poland 
3Jobin Yvon IBH Ltd., 45 Finnieston St., G3 8JU Glasgow, UK 

(download full version  and Errata)

The UV-visible optical absorption, luminescence excitation and the emission spectra of Eu3+, Ho3+ and Er3+ impurity ions in Eu-, Ho- and Er-doped glasses of CaO-Ga2O3-GeO2 system registered at room and liquid-nitrogen temperatures are presented. Luminescence decay curves of the impurity centres in the glass with Ca3Ga2Ge3O12 (or 3CaO-Ga2O3-3GeO2) garnet composition are obtained and analysed. The decay curves at the room temperature are described satisfactorily using a two-exponential approximation. We have the characteristic lifetimes t1 =0.90 ms and t2 = 1.55 ms for the Eu3+ centres (5D0 - 7F2 transition, lmax = 615 nm), t1 = 3.9 ms and t2 = 7.5 ms for Ho3+ (5S2 - 5I8 transition, lmax = 545 nm) and t1 = 10.6 ms, t2 = 22.4 ms and t1 = 10.7 ms, t2 = 25.0 ms for Er3+ (4S3/2 - 4I15/2 transition, lmax = 555 nm and 2H11/2 - 4I15/2 transition, lmax =545 nm), respectively. Basing on the optical spectra and the luminescence kinetics analysis for Eu3+, Ho3+ and Er3+, the two sites with different local environments are proposed for the rare-earth ions in the 3CaO-Ga2O3-3GeO2 glass surroundings. A possible local structure of the luminescence centres in the glass with 3CaO-Ga2O3-3GeO2 composition is discussed.

Keywords: glasses of CaO-Ga2O3-GeO2 system; Eu3+ ion; Ho3+ ion; Er3+ ion; optical absorption; luminescence; decay time

PACS: 78.40.-q, 78.55.Hx, 71.55.-I, 78.45.+h, 78.20.Bh

doi 10.3116/16091833/6/1/33/2005

1. Sviridov DT, Sviridova RL, Smirnov YuF. 1976. Optical spectra of transition metal ions in crystals, Moscow, Nauka.
2. Gajduk MI, Zolin VF, Gajgerova LS, 1974. Luminescence spectra of europium, Moscow, Nauka.
3. Brenier, Courrol LC, Pedrini C, Madej C, Boulon G, 1993. Acta Phys. Pol. A 84: 931.
4. Reddy MR, Raju SB, Veeraiah N, 2000. J. Phys. Chem. Sol. 61: 1567.
        doi:10.1016/S0022-3697(00)00035-4 http://dx.doi.org/10.1016/S0022-3697(00)00035-4
5. Tacheo S, Laporta P, Longhi S, Svelto O, Svelto C, 1996. Appl. Phys. B 63: 425.
6. Barnes NP, Rodriguez WJ, Walsh BM, 1996. J. Opt. Soc. Am. B 13: 2872.
7. Courrol LC, Kassab LRP, Fukumoto ME, Wetter NU, Tatumi SH, Morimoto NI, 2003. J. Lumin. 102-103: 91.
        doi:10.1016/S0022-2313(02)00497-0 http://dx.doi.org/10.1016/S0022-2313(02)00497-0
8. Karayianis N, Wortman DE, 1976. J. Phys. Chem. Solids 37: 675.
        doi:10.1016/0022-3697(76)90004-4 http://dx.doi.org/10.1016/0022-3697(76)90004-4
9. Cheng ZX, Zhang S, Song F, Guo HC, Han JR, Chen HC, 2002. J. Phys. Chem. Solids 63: 2011.
        doi:10.1016/S0022-3697(02)00187-7 http://dx.doi.org/10.1016/S0022-3697(02)00187-7
10. Ribeiro SLJ, Dexpert-Ghys J, Piriou B, Mastelaro VR, 1993. J. Non-Cryst. Solids 159: 213.
        doi:10.1016/0022-3093(93)90225-M http://dx.doi.org/10.1016/0022-3093(93)90225-M
11. Canale JE, Condrate RA, Nassau SrK, Cornilsen BC, 1986. J. Can. Ceram. Soc. 55: 50.
12. Wachtler, Speghini A, Gatterer K, Fritzer HP, Ajo D, Bettinelli M, 1998. J. Amer. Ceram. Soc. 81: 2045.
13. Toncelli, Tonelli M, Zannoni E, Cavalli E, Cialdi S, 2001. J. Lumin. 92: 237.
        doi:10.1016/S0022-2313(00)00261-1 http://dx.doi.org/10.1016/S0022-2313(00)00261-1
14. Damen JPM, Pistorius JA, Robertson JM, 1977. Mater. Res. Bull. 12: 73.
        doi:10.1016/0025-5408(77)90090-3 http://dx.doi.org/10.1016/0025-5408(77)90090-3
15. Mill BV, Butashin AV, Ellern AM, Majer AA, 1981. Izv. Akad. Nauk SSSR, Ser. Neorgan. Mater. 17: 1648.
16. Padlyak BV, Buchynskii PP, October 30, 1998. Patent of Ukraine, No. UA 25235 A.
17. Padlyak BV, Kuklinski B, and Grinberg M, 2002. Phys. Chem. Glasses 43C: 392.
18. Padlyak BV, Kuklinski B, Buchynskii PP, 2003. Opt. Appl. XXXIII: 175.
19. Padlyak, Vlokh O, Fabisiak K, Sagoo K, Kuklinski B, 2005. Opt. Mater.
20. Padlyak, Mudry S, Halchak V, Korolyshyn A, Rybicki J, Witkowska A, 2000. Opt. Appl. XXX: 691.
21. Chelstowski, Witkowska A, Rybicki J, Padlyak B, Trapananti A, Principi E, 2003. Opt. Appl. XXXIII: 125.
22. Nosenko E, Kravchishin VV, 1999. Ukr. Fiz. Zhurn. 44: 1257.
23. Nosenko E, Kostyk LV, Leshchuk RYe, 2001. J. Phys. Stud. 5: 85.
24. Abragam, Bleaney B, 1970. Electron paramagnetic resonance of transition ions, Oxford, Clarendon Press.
25. Carnall WT, Fields PR, Rajnak K, 1968. J. Chem. Phys. 49: 4424.
        doi:10.1063/1.1669893 http://dx.doi.org/10.1063/1.1669893
26. Padlyak BV, Bordun OM, Buchynskii PP, 1998. Acta Phys. Pol. A 95: 921.
27. Padlyak BV, Kuklinski B, 2004. Radiat. Meas. 38: 593.
        doi:10.1016/j.radmeas.2004.02.013 http://dx.doi.org/10.1016/j.radmeas.2004.02.013
28. Subbalakshmi P, Veeraiah N, 2003. J. Phys. Chem. Solids 64: 2027.
29. Judd BR, 1962. Phys. Rev. 127: 750.
        doi:10.1103/PhysRev.127.750 http://dx.doi.org/10.1103/PhysRev.127.750
30. Ofelt GS, 1962. J. Chem. Phys. 37: 511.
        doi:10.1063/1.1701366 http://dx.doi.org/10.1063/1.1701366
31. Padlyak BV, Koepke Cz, Wisniewski K, Grinberg M, Gutsze A, Buchynskii PP, 1998. J. Lumin. 79: 1.
        doi:10.1016/S0022-2313(98)00019-2 http://dx.doi.org/10.1016/S0022-2313(98)00019-2

Home | Instructions to Authors | Editorial Board | Meetings & Exhibitions