Home
page
Other articles
in this issue
|
On the Electron Spectrum of Crystalline Superstructures
1,2Lukiyanets B.A.
1Institute of Physical Optics, 23 Dragomanov
St., 79005 Lviv, Ukraine
2National University "Lvivska Politekhnika",
12 Bandera St., 79640 Lviv, Ukraine
download full version
Electron spectrum is analysed for the crystal that can be represented
as a system of two ordered structures nested one into the other. Intercalated
layered crystals, crystalline systems with the spin, charge, deformation
or dipole ordering, the adsorbent-adsorbate systems and the superstructures
may be relevant examples. The detailed consideration of the structures
with incom-mensurable parameters of their lattices is presented. It is
pointed to a unique possibility for essential change in the electron spectrum,
in particular for the case of ferroelectrics.
PACS: 71.15.-m, 64.70.Rh
Key words: superstructure, incommensurable lattices, electron spectrum
doi 10.3116/16091833/5/4/147/2004 |
|
1. Herman MA, 1986. Semiconductor superlattices ”Akademik-Verlag” Berlin.
2. Dresselhaus MS, 1986. (Ed.), Intercalation in layered materials
“Plenum Press” N.Y.-London.
3. Koshkin V, Dmitriev Yu, 1994. Chem. Rev. 19: 1.
4. Hibma T, Solid State Communs. 34: 445.
5. Hallak HA, Lee PA, 1983. Solid State Commun. 47: 503.
doi:10.1016/0038-1098(83)91077-3
http://dx.doi.org/10.1016/0038-1098(83)91077-3
6. Persson BN, 1992. Surf. Sci. Rep. 15: 1.
doi:10.1016/0167-5729(92)90012-Z
http://dx.doi.org/10.1016/0167-5729(92)90012-Z
7. Vlokh OG, Kityk AV, 2002. Crystalline dielectrics with incommensurate
modulated structure “NULP Publ. House” Lviv.
8. Bonch-Bruevich VL, 1973. Quasi-classical theory of motion of particles
in random field: in Statistical physics and quantum field. Theory. Ed.
by N.N.Bogolyubov Moscow.
9. Viosin P, Bastard G, Voss M, 1984. Pys. Rev. B29: 935.
10. Petrovkii IG, 1984. Lectures on theory of integral equations “Izd.
MGU” Moscow.
11. Davydov AS, 1973. Quantum mechanics “Nauka” Moscow. |