Ukrainian Journal of Physical Optics 


Number  3, Volume  2, September  2001

Home page
 

Other articles 

in this issue
Measurements of optical gyration in incommensurate (N(CH3)4)2ZnCl4 crystals with the universal null-polarimeter  
*Kushnir O.S., *Lutsiv-Shumski L.P., *Polovinko I.I., **Vlokh O.G.

* Physics Department, Lviv Ivan Franko National University, 8 Kyrylo and Mefodiy Str., 79005 Lviv, Ukraine
** Institute of Physical Optics, 23 Dragomanov Str., 79005 Lviv, Ukraine

download full version

Using the improved universal null-polarimetric technique, the birefringence, optical indicatrix orientation and the gyration of the (001)-plate of (N(CH3)4)2ZnCl4 crystals are re-studied in the temperature region close to normal-to-incommensurate phase transition. Both phases show a certain zero indicatrix rotation, while the gyration component g33 in the incommensurate phase is at least less than 2.10-8. The sources of the interpretation polarimetric errors which decrease the accuracy of the universal polarimeter and the HAUP are analyzed. Possible reasons for the residual gyration are discussed.

Key words: phase transitions, incommensurate phase, symmetry, gyration, polarimetry, HAUP
 

doi 10.3116/16091833/2/3/126/2001

References
1.Kobayashi J and Uesu Y, 1985. Ferroelectrics 64: 115-122.
2. Kobayashi J, Kumomi H and Saito K, 1986. J. Appl. Cryst. 19: 377-381.
        doi:10.1107/S0021889886089197  http://dx.doi.org/10.1107/S0021889886089197
3. Dijkstra E and Janner A, 1990. Ferroelectrics 105: 113-118 .
4. Dijkstra E, Meekes H and Kremers M, 1991. J. Phys. D: Appl. Phys. 24: 1861-1868.
        doi:10.1088/0022-3727/24/10/023  http://dx.doi.org/10.1088/0022-3727/24/10/023
5. Dijkstra E, Kremers M, and Meekes H, 1992. J. Phys.: Condens. Matter 4: 715-726.
        doi:10.1088/0953-8984/4/3/011  http://dx.doi.org/10.1088/0953-8984/4/3/011
6. Folcia CL, Ortega J, Etxebarria J and Breczewski T, 1993. Phys. Rev. B 48: 695-700.
        doi:10.1103/PhysRevB.48.695  http://dx.doi.org/10.1103/PhysRevB.48.695
7. Etxebarria J, 1994. Proc. Internat. Confer. on Aperiodic Crystals. World Scientific Publishing 219-228.
8. Kobayashi J, Saito K, Takahashi N and Kamiya I, 1993. Phys. Rev. B 48: 10038-10046.
        doi:10.1103/PhysRevB.48.10038  http://dx.doi.org/10.1103/PhysRevB.48.10038
9. Kremers M, Dijkstra E and Meekes H, 1996. Phys. Rev. B 54: 3125-3135.
        doi:10.1103/PhysRevB.54.3125  http://dx.doi.org/10.1103/PhysRevB.54.3125
10. Simon J, Weber J and Unruh H-G, 1996. Ferroelectrics 183: 161-170.
11. Kushnir OS, Shopa YI and Vlokh OG, 1993. Europhys. Lett. 22: 389-393.
12. Kushnir OS, Shopa YI, Vlokh OG, Polovinko II and Sveleba SA, 1993. J. Phys.: Condens. Matter 5: 4759-4766.
        doi:10.1088/0953-8984/5/27/020  http://dx.doi.org/10.1088/0953-8984/5/27/020
13. Vlokh OG and Kushnir OS, 1996. Pribory i Tekhnika Eksperim. 1: 119-124.
14. Kushnir OS and Vlokh OG, 1997. Proc. SPIE 3094: 88-99.
        doi:10.1117/12.271799  http://dx.doi.org/10.1117/12.271799
15. Kushnir OS and Vlokh OG, 1993. J. Phys.: Condens. Matter 5: 7017-7032.
        doi:10.1088/0953-8984/5/37/020  http://dx.doi.org/10.1088/0953-8984/5/37/020
16. Kushnir OS and Vlokh OG, 1997. Ferroelectrics 192: 243-248.
17. Kushnir OS, 1997. J. Phys.: Condens. Matter 9: 9259-9273.
        doi:10.1088/0953-8984/9/43/011  http://dx.doi.org/10.1088/0953-8984/9/43/011
18. Kushnir OS, Lokot LO and Polovinko II, 2000. J. Phys.: Condens. Matter 12: 8321-8330.
        doi:10.1088/0953-8984/12/38/308  http://dx.doi.org/10.1088/0953-8984/12/38/308
19. Kapustianik VB, Polovinko II, Sveleba SA, Vlokh OG and Zhmurko VS, Europhys. Lett. 19: 429-432.
20. Cummins HZ, 1990. Phys. Rep. 185: 211-409.
        doi:10.1016/0370-1573(90)90058-A  http://dx.doi.org/10.1016/0370-1573(90)90058-A
21. Meekes H and Janner A, 1988. Phys. Rev. B 38: 8075-8087.
        doi:10.1103/PhysRevB.38.8075  http://dx.doi.org/10.1103/PhysRevB.38.8075
22. Kushnir OS, 2001. J. Phys. Studies.

Home | Instructions to Authors | Editorial Board | Meetings & Exhibitions