Home
page
Other articles
in this supplement |
Effect of MnO2 doping
on the dielectric properties of barium titanate ceramics
(Download
full version)
Sitko D., Bąk W., Garbarz-Glos B., Antonova
M. and Jankowska-Sumara I.
Abstract. The effect of MnO2 doping on the structure, microstructure
and dielectric proper-ties of BaTiO3 has been studied. For this purpose
MnO2-doped BaTiO3 ceramics have been prepared using a conventional ceramic
method. The energy-dispersive X-ray spectroscopy investigations have revealed
that the samples BaTiO3 + x wt. % MnO2 (x = 0.01; 0.1) are perfectly sintered.
Our studies have shown that all the electric parameters under investigation
depend on the frequency of electric field and the amount of manganese substitution.
In order to understand better the character of phase transition in BaTiO3
+ x wt. % MnO2 (x = 0.01; 0.1), we have also studied the thermal behaviour
of these compounds.
Keywords: BaTiO3 doped with Mn, DSC, dielectric
spectroscopy
UDC: 536, 537
PACS: 77.80.B-, 77.80.bg
Ukr. J. Phys. Opt.
13, Suppl.3, S34-S43
doi: 10.3116/16091833/13/1/S34/2012
Received: 09.09.2012
Анотація. У роботі досліджено вплив
легування MnO2 на структуру, мікроструктуру
і діелектричні властивості BaTiO3. Для цього
було підготовлено кераміку BaTiO3, леговану
MnO2, згідно із загальноприйнятим методом.
За методом енергодисперсійної X-спектроскопії
виявлено різне спікання зразків зі складом
BaTiO3+ x ваг. % MnO2 (x = 0,01; 0,1). Встановлено, що
електричні параметри кераміки залежать
від частоти електричного поля і концентрації
заміщення. Для кращого розуміння характеру
фазового переходу в сис-темах BaTiO3 + x ваг.
% MnO2 (x = 0,01; 0,1) було досліджено температурну
поведінку діелектричних характеристик. |
|
REFERENCES
-
Kishi H, Mizuno Y and Chazono H, 2003. Base-metal electrode-multilayer
ceramic capacitors: past, present and future perspectives. Japan. J. Appl.
Phys. 42: 1–15. doi:10.1143/JJAP.42.1
-
Randall C A, 2001. Scientific and engineering issues of the state-of-the-art
and future multilayer capacitors. J. Ceram. Soc. Japan. 109: S2–S6. doi:10.2109/jcersj.109.S2
-
Tillmanns E, Hofmeister W and Baur W H, 1985. Variations on the theme of
closest packing: the structural chemistry of barium titanate compounds.
J. Solid State Chem. 58: 14–28. doi:10.1016/0022-4596(85)90265-8
-
Kirby K W and Wechsler B A, 1991. Phase relations in the barium titanate–titanium
oxide system. J. Am. Ceram. Soc. 74: 1841–1947. doi:10.1111/j.
1151-2916.1991.tb07797.x
-
Jona F and Shirane G. Ferroelectric crystals. New York: Macmillan (1962).
PMid:14461453
-
Keith G M, Rampling M J, Sarma K, McAlford N and Sinclair D C, 2004. Synthesis
and characterization of doped 6h-BaTiO3 ceramics. J. Eur. Ceram. Soc. 24:
1721–1724. doi:10.1016/S0955-2219(03)00495-3
-
Kirianov A, Ozaki N, Ohsato H, Kohzul N and Kishi H, 2001. Studies on the
solid solution of Mn in BaTiO3. Japan. J. Appl. Phys. 40: 5619–5623.
doi:10.1143/JJAP.40.5619
-
Wei X K, Zhang Q H, Li F Y, Jin C Q and Yu R C, 2010. Structural evolution
induced by acceptor doping into BaTiO3 ceramics. J. Alloys Compd. 508:
486–493. doi:10.1016/j.jallcom.2010.08.099
-
Hennings D F K, 2001. Dielectric materials for sintering in reducing atmospheres.
J. Eur. Ceram. Soc. 21: 1637–1642. doi:10.1016/S0955-2219(01)00082-6
-
Tsur Y, Dunbar T D and Randall C A, 2001. Crystal and defect chemistry
of rare earth cations in BaTiO3. J. Electroceram. 7: 25–34. doi:10.1023/A:1012218826733
-
Wang S F, Wang Y R, Wu Y C and Liu Y J, 2009. Densification, microstructural
evolution and dielectric properties of hexagonal Ba(Ti1–xMnxO3) ceramics
sintered with fluxes. J. Alloy. Compd. 480: 499–504. doi:10.1016/j.jallcom.2009.01.108
-
Rödel J, Tomandl G, 1984. Degradation of Mn-doped BaTiO3 under high d.
c. electric field. J. Mat. Sci. 19: 3515–3523. doi:10.1007/BF02396925
-
Garbarz - Glos B, Bormanis K and Sitko D, 2011. Effect of Zr4+ doping on
the electrical properties of BaTiO3 ceramics. Ferroelectrics 417: 118–123.
doi:10.1080/00150193.2011.578508
-
Shvartsman V V, Kleemann W, Dec J, Xu Z K and Lu S G, 2006. Diffuse phase
transition in BaTi1–xSnxO3 ceramics: an intermediate state between ferroelectric
and relaxor behaviour. J. Appl. Phys. 99: 124111–124119. doi:10.1063/1.2207828
-
Capsal J F, and Pousserot Ch, Dantras E, Dandurand J and Lacabanne C, 2010.
Dynamic mechanical behaviour of polyamide 11/Barium titanate ferroelectric
composites. Polymer. 51: 5207–5211. doi:10.1016/j.polymer.2010.09.011
-
Heywang W, 1961. Barium titanate as a semiconductor with blocking layers.
Solid State Electron. 3: 51–58. doi:10.1016/0038-1101(61)90080-6
-
Heywang W, 1964. Resistivity anomaly in doped barium titanate. J. Am. Ceram.
Soc. 47: 484–490. doi:10.1111/j.1151-2916.1964.tb13795.x
-
Kröger F A and Vink H J. Solid state physics, Vol. 3. New York: Academic
Press (1956).
-
Smyth D M. The defect chemistry of metal oxides. New York: Oxford University
Press (2000).
-
Hagemann H J and Hennings D F K, 1981. Reversible weight change of acceptor
doped barium titanate. J. Am. Ceram. Soc. 64: 590–594. doi:10.1111/j.1151-2916.1981.tb10223.x
-
Lee D K, Yoo H I and Becker K D, 2002. Nonstoichiometry and defect structure
of Mn-doped BaTiO3–δ. Solid State Ionics. 154–155: 189–193. doi:10.1016/S0167-2738(02)00427-7
-
Aksel E, Jakes P, Erdem E, Smyth DM, Ozarowski A, van Tol J, Jones J L
and Eichel R A, 2011. Processing of manganese-doped [Bi0.5Na0.5]TiO3 ferroelectrics:
reduction and oxidation reaction during calcinations and sintering. J.
Am. Ceram. Soc. 94: 1363–1367. doi:10.1111/j.1551-2916.2010.04249.x
-
Takezawa Y, Kobayashi K, Nakasone F, Suzuki T, Mizuno Y and Imai H, 2009.
Mn-doped BaTiO3 thin film sintered using nanocrystals and its dielectric
properties. Japan. J. Appl. Phys. 48: 111408–111413. doi:10.1143/JJAP.48.111408
-
Eichel R A, 2007. Defect structure of oxide ferroelectrics–valence state,
site of incorporation, mechanisms of charge compensation and internal bias
fields. J. Electroceram. 19: 9–21. doi:10.1007/s10832-007-9068-8
-
Erdem E, Jakes P and Eichel R A, 2010. Formation of (Ti'Ti−V••O)•
defect dipoles in BatiO3 ceramics heat-treated under reduced oxygen partial-pressure.
Functional Mater. Lett. 3: 65–68. doi:10.1142/S1793604710000956
-
Eichel R A, 2011. Structural and dynamic properties of oxygen vacancies
in perovskite oxides-analysis of defect chemistry by modern multi-frequency
and pulsed EPR techniques. Chem. Phys. 13: 368–384.doi:10.1039/b918782k
PMid:21082136
(c) Ukrainian
Journal of Physical Optics |