Ukrainian Journal of Physical Optics 

Supplement 3, 2012

Home page
 
 

Other articles 

in this supplement
Effect of MnO2 doping on the dielectric properties of barium titanate ceramics

(Download full version)

Sitko D., Bąk W., Garbarz-Glos B., Antonova M. and Jankowska-Sumara I.

Abstract. The effect of MnO2 doping on the structure, microstructure and dielectric proper-ties of BaTiO3 has been studied. For this purpose MnO2-doped BaTiO3 ceramics have been prepared using a conventional ceramic method. The energy-dispersive X-ray spectroscopy investigations have revealed that the samples BaTiO3 + x wt. % MnO2 (x = 0.01; 0.1) are perfectly sintered. Our studies have shown that all the electric parameters under investigation depend on the frequency of electric field and the amount of manganese substitution. In order to understand better the character of phase transition in BaTiO3 + x wt. % MnO2 (x = 0.01; 0.1), we have also studied the thermal behaviour of these compounds. 

Keywords: BaTiO3 doped with Mn, DSC, dielectric spectroscopy

UDC: 536, 537
PACS: 77.80.B-, 77.80.bg
Ukr. J. Phys. Opt. 13, Suppl.3, S34-S43 
doi: 10.3116/16091833/13/1/S34/2012
Received: 09.09.2012

Анотація. У роботі досліджено вплив легування MnO2 на структуру, мікроструктуру і діелектричні властивості BaTiO3. Для цього було підготовлено кераміку BaTiO3, леговану MnO2, згідно із загальноприйнятим методом. За методом енергодисперсійної X-спектроскопії виявлено різне спікання зразків зі складом BaTiO3+ x ваг. % MnO2 (x = 0,01; 0,1). Встановлено, що електричні параметри кераміки залежать від частоти електричного поля і концентрації заміщення. Для кращого розуміння характеру фазового переходу в сис-темах BaTiO3 + x ваг. % MnO2 (x = 0,01; 0,1) було досліджено температурну поведінку діелектричних характеристик. 

REFERENCES
  1. Kishi H, Mizuno Y and Chazono H, 2003. Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Japan. J. Appl. Phys. 42: 1–15. doi:10.1143/JJAP.42.1 
  2. Randall C A, 2001. Scientific and engineering issues of the state-of-the-art and future multilayer capacitors. J. Ceram. Soc. Japan. 109: S2–S6. doi:10.2109/jcersj.109.S2 
  3. Tillmanns E, Hofmeister W and Baur W H, 1985. Variations on the theme of closest packing: the structural chemistry of barium titanate compounds. J. Solid State Chem. 58: 14–28. doi:10.1016/0022-4596(85)90265-8 
  4. Kirby K W and Wechsler B A, 1991. Phase relations in the barium titanate–titanium oxide system. J. Am. Ceram. Soc. 74: 1841–1947. doi:10.1111/j. 1151-2916.1991.tb07797.x 
  5. Jona F and Shirane G. Ferroelectric crystals. New York: Macmillan (1962). PMid:14461453 
  6. Keith G M, Rampling M J, Sarma K, McAlford N and Sinclair D C, 2004. Synthesis and characterization of doped 6h-BaTiO3 ceramics. J. Eur. Ceram. Soc. 24: 1721–1724. doi:10.1016/S0955-2219(03)00495-3 
  7. Kirianov A, Ozaki N, Ohsato H, Kohzul N and Kishi H, 2001. Studies on the solid solution of Mn in BaTiO3. Japan. J. Appl. Phys. 40: 5619–5623. doi:10.1143/JJAP.40.5619 
  8. Wei X K, Zhang Q H, Li F Y, Jin C Q and Yu R C, 2010. Structural evolution induced by acceptor doping into BaTiO3 ceramics. J. Alloys Compd. 508: 486–493. doi:10.1016/j.jallcom.2010.08.099 
  9. Hennings D F K, 2001. Dielectric materials for sintering in reducing atmospheres. J. Eur. Ceram. Soc. 21: 1637–1642. doi:10.1016/S0955-2219(01)00082-6 
  10. Tsur Y, Dunbar T D and Randall C A, 2001. Crystal and defect chemistry of rare earth cations in BaTiO3. J. Electroceram. 7: 25–34. doi:10.1023/A:1012218826733 
  11. Wang S F, Wang Y R, Wu Y C and Liu Y J, 2009. Densification, microstructural evolution and dielectric properties of hexagonal Ba(Ti1–xMnxO3) ceramics sintered with fluxes. J. Alloy. Compd. 480: 499–504. doi:10.1016/j.jallcom.2009.01.108 
  12. Rödel J, Tomandl G, 1984. Degradation of Mn-doped BaTiO3 under high d. c. electric field. J. Mat. Sci. 19: 3515–3523. doi:10.1007/BF02396925 
  13. Garbarz - Glos B, Bormanis K and Sitko D, 2011. Effect of Zr4+ doping on the electrical properties of BaTiO3 ceramics. Ferroelectrics 417: 118–123. doi:10.1080/00150193.2011.578508 
  14. Shvartsman V V, Kleemann W, Dec J, Xu Z K and Lu S G, 2006. Diffuse phase transition in BaTi1–xSnxO3 ceramics: an intermediate state between ferroelectric and relaxor behaviour. J. Appl. Phys. 99: 124111–124119. doi:10.1063/1.2207828 
  15. Capsal J F, and Pousserot Ch, Dantras E, Dandurand J and Lacabanne C, 2010. Dynamic mechanical behaviour of polyamide 11/Barium titanate ferroelectric composites. Polymer. 51: 5207–5211. doi:10.1016/j.polymer.2010.09.011 
  16. Heywang W, 1961. Barium titanate as a semiconductor with blocking layers. Solid State Electron. 3: 51–58. doi:10.1016/0038-1101(61)90080-6 
  17. Heywang W, 1964. Resistivity anomaly in doped barium titanate. J. Am. Ceram. Soc. 47: 484–490. doi:10.1111/j.1151-2916.1964.tb13795.x 
  18. Kröger F A and Vink H J. Solid state physics, Vol. 3. New York: Academic Press (1956). 
  19. Smyth D M. The defect chemistry of metal oxides. New York: Oxford University Press (2000). 
  20. Hagemann H J and Hennings D F K, 1981. Reversible weight change of acceptor doped barium titanate. J. Am. Ceram. Soc. 64: 590–594. doi:10.1111/j.1151-2916.1981.tb10223.x 
  21. Lee D K, Yoo H I and Becker K D, 2002. Nonstoichiometry and defect structure of Mn-doped BaTiO3–δ. Solid State Ionics. 154–155: 189–193. doi:10.1016/S0167-2738(02)00427-7 
  22. Aksel E, Jakes P, Erdem E, Smyth DM, Ozarowski A, van Tol J, Jones J L and Eichel R A, 2011. Processing of manganese-doped [Bi0.5Na0.5]TiO3 ferroelectrics: reduction and oxidation reaction during calcinations and sintering. J. Am. Ceram. Soc. 94: 1363–1367. doi:10.1111/j.1551-2916.2010.04249.x 
  23. Takezawa Y, Kobayashi K, Nakasone F, Suzuki T, Mizuno Y and Imai H, 2009. Mn-doped BaTiO3 thin film sintered using nanocrystals and its dielectric properties. Japan. J. Appl. Phys. 48: 111408–111413. doi:10.1143/JJAP.48.111408 
  24. Eichel R A, 2007. Defect structure of oxide ferroelectrics–valence state, site of incorporation, mechanisms of charge compensation and internal bias fields. J. Electroceram. 19: 9–21. doi:10.1007/s10832-007-9068-8 
  25. Erdem E, Jakes P and Eichel R A, 2010. Formation of (Ti'Ti−V••O) defect dipoles in BatiO3 ceramics heat-treated under reduced oxygen partial-pressure. Functional Mater. Lett. 3: 65–68. doi:10.1142/S1793604710000956 
  26. Eichel R A, 2011. Structural and dynamic properties of oxygen vacancies in perovskite oxides-analysis of defect chemistry by modern multi-frequency and pulsed EPR techniques. Chem. Phys. 13: 368–384.doi:10.1039/b918782k PMid:21082136
(c) Ukrainian Journal of Physical Optics