Home
page
Other articles
in this supplement |
Studies of the influence
of uniaxial pressure on the electric behav-iour of Li0.015Na0.985NbO3 ceramics
(Download
full version)
Włodzimierz Śmiga and Barbara Garbarz-Glos
Abstract. Lead-free ceramics Li0.015Na0.985NbO3 are synthesised using
a conven-tional solid-state process. A single-phase perovskite ceramic
structure is identified with an X-ray powder diffraction technique. An
energy-dispersive X-ray spectros-copy analysis performed for individual
grains of our sample shows a fairly homoge-neous distribution of all the
elements throughout the grains. The dielectric permittivity
and the loss tangent tan are measured under
uniaxial pressure. With increasing pressure, the peak in the (T)
curve decreases, becomes diffused, and finally shifts towards lower temperatures
T. The value tan increases with increasing
uniaxial pressure, while its local maximum also shifts towards lower temperatures.
Keywords: NaNbO3–LiNbO3 solid solutions,
antiferroelectrics, dielectric properties
UDC: 536, 537
PACS: 77.80.-e, 77.22.d, 77.65j
Ukr. J. Phys. Opt.
13, Suppl.3, S27-S33
doi: 10.3116/16091833/13/1/S27/2012
Received: 09.09.2012
Анотація. Кераміку Li0.015Na0.985NbO3, що не
містить свинцю, синтезовано з використанням
загальноприйнятого твердотільного процесу.
Однофазну перовськитну структуру цієї
кераміки ідентифіковано за X-променевим
порошковим дифракційним методом. Аналіз
окремих зерен, проведений за методом енергодисперсійної
X-спектроскопії, засвідчив досить однорідний
розподіл усіх елементів у межах зерен.
Діелектричну проникність
і тангенс кута втрат tg
досліджено під дією одновісного тиску.
Зі зростанням тиску максимум залежності
(T)
зменшується, стає розмитим і зміщується
в область нижчих температур. Значення tg
зростає з підвищенням одновісного тиску,
а його локальний максимум зміщується у
бік низьких температур. |
|
REFERENCES
-
Glazer A M and Ishida K, 1973. Cation displacements and octahedral tilts
in NaNbO3 Part I. Determination from x-ray difference reflections. Ferroelectrics.
6: 219–224. doi:10.1080/00150197408243971
-
Molak A, 1987. The influence of reduction in valency of Nb ions on the
antiferroelectric phase transition in NaNbO3. Solid State Commun. 62: 413–417.
doi:10.1016/0038-1098(87)91045-3
-
Miga S, Dec J and Pawełczyk M, 1996. Peculiarities of thermal switching
in sodium niobate crystals. J. Phys. Condens. Matter. 8: 8413–8420. doi:10.1088/0953-8984/8/43/032
-
Megaw H D, 1974. The seven phases of sodium niobate. Ferroelectrics. 7:
87–89. doi:10.1080/00150197408237956
-
Kania A and Kwapuliński J, 1999. Ag1-xNaxNbO3 (ANN) solid solutions: from
disorder antiferroelectric AgNbO3 to normal antiferroelectric NaNbO3. J.
Phys. Condens. Matter. 11: 8933–8946. doi:10.1088/0953-8984/11/45/316
-
Avogadro A, Bonera G, Borsa F and Rigamonti A, 1974. Static and dynamic
properties of the structural phase transitions in NaNbO3. Phys. Rev. B
9: 3905–3920. doi:0.1103/PhysRevB.9.3905
-
Raevskii I P, Reznichenko L A, Smotrakov V G, Eremkin V V, Malitskaya M
A, Kuznetsova E M and Shilkina L A, 2000. A new phase transition in sodium
niobate. Techn. Phys. Lett. 26: 744–746. doi:10.1134/1.1307831
-
Koruza J, Tellier J, Malic B, Bobnar V and M. Kosec, 2010. Phase transitions
of sodium niobate powder and ceramics prepared by solid state synthesis.
J. Appl. Phys. 108: 113509. doi:10.1063/1.3512980
-
Akhnazarova V V, Shilkina L A, Kravchenko O Yu and Reznichenko L A, 2011.
Phase pattern of sodium niobate ceramics with different properties in the
temperature range of 25–700oC. Crystallogr. Rep. 56: 5282–5288.
doi:10.1134/S106377451006101X
-
Abeoulleil M M and Leonberger F R, 1989. Waweguides in lithium niobate.
J. Am. Ceram. Soc. 72: 1311–1321. doi:10.1111/j.1151-2916.1989.tb07644.x
-
Miller R C, Boyd G D and Savage A, 1965. Nonlinear optical interactions
in LiNb03 without double refraction. Appl. Phys. Lett. 6: 77–80. doi:10.1063/1.1754174
-
Weis R S and Gaylord T K, 1985. Lithium niobate: sumary of physical properties
and structure. Appl. Phys. A. 37: 191–203. doi:10.1007/BF00614817
-
Kip D, 1998. Photorefractive waveguides in oxide crystals: fabrication,
properties, and application. Appl. Phys. B. 67: 131–150. doi:10.1007/s003400050485
-
Sadel A, Von der Muhll R, Ravez J, Chaminade JP and Hagenmuler P, 1982.
Synthese et etude des transitions de phases de ceramiques et de cristaux
de composition Li0.02Na0.98NbO3. Solid State Commun. 44: 345–349. doi:10.1016/0038-1098(82)90868-7
-
Norbe M A L and Lanfredi S, 2003. Ferroelectric state analysis in grain
boundary of Na0.85Li0.15NbO3 ceramic. J. Appl. Phys. 93: 5557–5562. doi:10.1063/1.1564281
-
Sadel A, Van der Muhll R and Ravez J, 1983. Etude optique et coulpage ferroelectrique
paraelectrique de cristaux de composition Li0.02Na0.98NbO3. Mat. Res. Bull.
18: 45–51. doi:10.1016/0025-5408(83)90170-8
-
Pardo L, Duran-Martin P, Mercurio IP, Nibou L and Jimenez B, 1997. Temperature
behaviour of structural, dielectric and piezoelectric properties of sol-gel
processed ceramics of the system LiNbO3-NaNbO3. J. Phys. Chem. Solids.
58: 1355–1339. doi:10.1016/S0022-3697(97)00034-6
-
Jimenez R, Hungiria T, Castro A and Jimenez-Riobóo R, 2008. Phase transitions
in Na1-xLixNbO3 solid solution ceramics studied by a new pyroelectric current
base method. J. Phys. D.: Appl. Phys. 41: 065408.doi:10.1088/0022-3727/41/6/065408
-
Li G R, Yin Q R, Zheng L Y, Guo Y Y and Cao W W, 2008. Dielectric and piezoelectric
properties of sodium lithium niobate Na1-xLixNbO3 lead free ferroelectric
ceramics. J. Electroceram. 21: 323–326. doi:10.1007/s10832-007-9163-x
-
Chaker C, El Gharbi W, Abdelmoula N, Simon A, Khemakechem H and Maglione
M, 2011. Na1–xLixNbO3 ceramics studied by X-ray diffraction, dielectric,
pyroelectric, piezoelectric and Raman spectroscopy. J. Phys. Chem. Solids.
72: 1140–1146. doi:10.1016/j.jpcs.2011.07.002
-
Jimenez B, Moure A, Castro A, Hungria T and Pardo L, 2004. Sodium-lithium
niobate piezoceramics prepared by mechanochemical activation assisted methods.
Boletin de la Sociedad Espanola de Ceramica y Vidrio. 43:30–34.
-
Jonscher A K. Dielectric relaxation in solids. London: Chelsea Dielectric
Press Ltd. (1983).
-
Steiner O, Tagantser A K, Colla E L and Setter N, 1999. Uniaxial stress
dependence of the permittivity electroceramics. J. Eur. Ceram. Soc. 19:
1243–1246. doi:10.1016/S0955-2219(98)00411-7
-
Suchanicz J, Dambakalne M, Shebanovs L, Stenberg A, Garbarz-Glos B, Śmiga
W and Kuś Cz, 2003. Effect of compressive stress on dielectric and ferroelectric
properties of 0.25PSN-0.75PLuN ceramics. Ferroelectrics. 289: 53–61.
doi:10.1080/00150190390221142
-
Suchanicz J and Kania A, 2008. Uniaxial pressure influence on dielectric
properties of Pb(Zr0.99Ti0.01)O3 single crystals. Phase Trans. 81: 1089–1093.
doi:10.1080/01411590802460791
(c) Ukrainian
Journal of Physical Optics |