Home
page
Other articles
in this supplement |
Non-volatile memory
and IR radiation modulators based upon graphene-on-ferroelectric substrate.
A review
(Download
full version)
Strikha M. V.
Abstract. I present a review of both experimental and theoretical studies
performed during the recent three years, which deal with the physical properties
and possible applications of graphene placed on ferroelectric (organic
or Pb(ZrxTi1–x)O3 (PZT) ceramic) substrates. The system ‘graphene-on-ferroelectric
substrate’ has unique ad-vantages in comparison with the graphene deposited
on SiO2 or on dielectrics with high dielectric permittivity. In particular,
one can obtain high (~ 1012 cm–2) carrier concentrations in
the doped graphene-on-ferroelectric structures for moderate (of the order
of 1 V) gate voltages. The existence of a hysteresis (or anti-hysteresis)
in the dependence of electrical resistance of graphene channel on the gate
voltage facili-tates creating bistable systems for different applications.
The use of ferroelectric substrates has already enabled developing of robust
elements of non-volatile mem-ory of a new generation. These elements operate
for more than 105 switching cycles and store information for
more than 103 s. Such systems can be characterised theo-retically
by ultrafast switching rates (~ 10–100 fs). A theoretical analysis has
also demonstrated that the structures ‘graphene-on-PZT ferroelectric
substrate’ would re-sult in developing efficient and fast small-sized
modulators of mid-IR and near-IR radiations for different optoelectronic
applications.
Keywords: graphene, ferroelectrics, non-volatile
memory, modulators
UDC: 535.8, 535.3, 535.243, 537.226
PACS: 73.22.Pr, 78.67.Wj, 85.50.-n
Ukr. J. Phys. Opt.
13, Suppl.3, S5-S26
doi: 10.3116/16091833/13/1/S5/2012
Received: 29.02.2011
Анотація. Подано огляд експериментальних
і теоретичних робіт за останні три роки,
у яких вивчають властивості та можливі
застосування графену на сегнетоелектричній
підкладці (органічному сегнетоелектрику
або кераміці Pb(ZrxTi1–x)O3 (скорочено PZT)). Графен
на сегнетоелектричній підкладці має декілька
унікальних переваг, порівняно з графеном
на підкладці SiO2 або на діелектриках з високою
діелектричною проникністю. У легованому
затвором графені на сегнетоелектрику можна
одержати високі (~ 1012 cм–2) концентрації
носіїв для невисоких (порядку 1 В) напруг
на затворі. Наявність гістерезису (або
антигістерезису) на залежності питомого
опору графенового каналу від напруги на
затворі дає змогу створювати бістабільні
системи для різних застосувань. Використання
сегнетоелектричних підкладок для графену
уможливило створення надійних елементів
енергонезалежної пам’яті нового покоління.
Ці елементи витримують понад 105 перемикань,
працюють і зберігають інформацію упродовж
понад 103 с. Теоретично їх можна характеризувати
ультрашвидким перемиканням (~ 10–100 фс).
Теоретично також було доведено, що на основі
графену на сегнетоелектричній підкладці
PZT можна створити ефективні, швидкодійні
й мініатюрні модулятори випромінювання
близького та середнього ІЧ-діапазонів. |
|
REFERENCES
-
Geim A, 2009. Graphene: status and prospects. Science. 324: 1530–1934.
DOI:10.1126/science.1158877PMid:19541989
-
Novoselov K, 2011. Graphene: Materials in the Flatland. Uspekhi Fiz. Nauk.
181: 1299–1311. DOI:10.3367/UFNr.0181.201112f.1299
-
Das Sarma S, Shaffique Adam, Hwang E H and Enrico Rossi, 2011. Electronic
transport in two dimensional graphene. Rev. Mod. Phys. 83: 407–470. DOI:10.1103/RevModPhys.83.407
-
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva
I V and Firsov A A, 2004. Electric field effect in atomically thin carbon
films. Science. 306: 666–669. DOI:10.1126/science.1102896PMid:15499015
-
Gusynin V P and Sharapov S G, 2005. Unconventional integer quantum Hall
effect in graphene. Phys. Rev. Lett. 95: 146801. DOI:10.1103/PhysRevLett.95.146801PMid:16241680
-
Gusynin V P and Sharapov S G, 2006. Transport of Dirac quasiparticles in
graphene: Hall and optical conduc-tivities. Phys. Rev. B. 73: 245411. DOI:10.1103/PhysRevB.73.245411
-
Gusynin V P, Sharapov S G and Beck H, 2004. Magnetic oscillations in planar
systems with the Dirac-like spectrum of quasiparticle excitations. Phys.
Rev. B. 69: 075104. DOI:10.1103/PhysRevB.69.075104
-
Gusynin V P and Sharapov S G, 2005. Magnetic oscillations in planar systems
with the Dirac-like spectrum of quasiparticle excitations. II. Transport
properties. Phys. Rev. B. 71: 125124. DOI:10.1103/PhysRevB.71.125124
-
Gusynin V P, Sharapov S G and Carbotte J P, 2006. Unusual microwave response
of Dirac quasiparticles in graphene. Phys. Rev. Lett. 96: 256802. DOI:10.1103/PhysRevLett.96.256802
PMid:16907333
-
Peres N M R, 2010. Colloquium: The transport properties of graphene: An
introduction. Rev. Mod. Phys. 82: 2673–2700. DOI:10.1103/RevModPhys.82.2673
-
Vasko F T and Raichev O E, Quantum kinetic theory and applications. New
York: Springer, 2005.
-
Gusynin V, Loktev V and Sharapov S, 2010. Graphene: unbelievable became
possible. Visnyk NAN Ukraine. 12: 51–59.
-
Strikha M V, 2011. Non-equilibrium electrons and holes in graphene (Review).
Sensor Electronics & Microsys-tem Technologies. 2(8): 10–19.
-
Seyoung Kim, Junghyo Nah, Insun Jo, Davood Shahrjerdi, Luigi Colombo, Zhen
Yao, Emanuel Tutuc and San-jay K Banerjee, 2009. Realization of a high
mobility dual-gated graphene field effect transistor with Al2O3 di-electric.
Appl. Phys. Lett. 94: 062107. DOI:10.1063/1.3077021
-
Annirudha Konar, Tian Fang and Depdeep Jena, 2010. Effect of high-κ gate
dielectrics on charge transport in graphene-based field effect transistors.
Phys. Rev. B. 82: 115452. DOI:10.1103/PhysRevB.82.115452
-
M V Strikha, 2011. Modulation of a mid-IR radiation by a gated graphene
on ferroelectric substrate. Ukr. J Phys. Opt. 12: 162–165.
-
Yi Zheng, Guang-Xin Ni, Chee-Tat Toh, Ming-Gang Zeng, Shu-Ting Chen, Kui
Yao and Barbaros Özyilmaz, 2009. Gate-controlled nonvolatile graphene-ferroelectric
memory. Appl. Phys. Lett. 94: 163505. DOI:10.1063/1.3119215
-
Zheludev I S, Fundamentals of ferroelectricity. Moscow: Atomizdat, (1973).
-
Strukov B A and Levanyuk A P, Ferroelectric phenomena in crystals: Physical
foundations. Moscow: Nauka, (1983).
-
Valasek J, 1921. Piezoelectric and allied phenomena in Rochelle salt. Phys.
Rev. 17: 537–541. DOI:10.1103/PhysRev.17.475
-
Rouquette J, Haines J, Bornand V, Pintard M, Papet Ph, Bousquet C, Konczewicz
L, Gorelli F and Hull S, 2004. Pressure tuning of the morphotropic phase
boundary in piezoelectric lead zirconate titanate. Phys. Rev. B. 70: 014108.
DOI:10.1103/PhysRevB.70.014108
-
Liu W, Jiang B and Zhu W, 2000. Self-biased dielectric bolometer from epitaxially
grown Pb(Zr,Ti)O3 and lan-thanum-doped Pb(Zr,Ti)O3 multilayered thin films.
Appl. Phys. Lett. 77: 1047–1049. DOI:10.1063/1.1289064
-
Scott J F, Ferroelectric memories. New York: Springer, (2000).
-
Dawber M, Rabe K M and Scott J F, 2005. Physics of thin-film ferroelectric
oxides. Rev. Mod. Phys. 77: 1083–1130. DOI:10.1103/RevModPhys.77.1083
-
Morozovska H M and Sviechnikov H S, 2010. Effects of memory in heterostructures
on polarly active nano-films. Ukr. J. Phys. 6: 140–170.
-
Hlinchuk M D, Yeliseev Ye A and Morozovska H M, 2009. Size effects in ferroelectric
nanomaterials. Ukr. J. Phys. 5: 34–60.
-
Kohlstedt H, Pertsev N A, Contreras Rodrigues J and Waser R, 2005. Theoretical
current-voltage characteristics of ferroelectric tunnel junctions. Phys.
Rev. B. 72: 125341. DOI:10.1103/PhysRevB.72.125341
-
Zhuravlev M Ye, Sabirianov R F, Jaswal S S and Tsymbal E Y, 2005. Giant
electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94:
246802–4. DOI:10.1103/PhysRevLett.94.246802
-
Ramesh R and Spaldin N A, 2007. Multiferroics: progress and prospects in
thin films. Nature Materials. 6: 21–29. DOI:10.1038/nmat1805PMid:17199122
-
Noel A Clark and Sven Torbjörn Lagerwall, 1980. Submicrosecond bistable
electro-optic switching in liquid crystals. Appl. Phys. Lett. 36: 899–901.
DOI:10.1063/1.91359
-
Yi Zheng, Guang-Xin Ni, Chee-Tat Toh, Chin-Yaw Tan, Kui Yao and Barbaros
Özyilmaz, 2010. Graphene field effect transistors with ferroelectric gating.
Phys. Rev. Lett. 105: 166602. DOI:10.1103/PhysRevLett.105.166602
-
Santosh Raghavan, Igor Stolichnov, Nava Setter, Jean-Savin Heron, Mahmut
Tosun and Andras Kis, 2012. Long-term retention in organic ferroelectric-graphene
memories. Appl. Phys. Lett. 100: 023507. DOI:10.1063/1.3676055
-
Hong X, Hoffman J, Posadas A, Zou K, Ahn C H and Zhu J, 2010. Unusual resistance
hysteresis in n-layer gra-phene field effect transistors fabricated on
ferroelectric Pb(Zr0.2Ti0.8)O3. Appl. Phys. Lett. 97: 033114. DOI:10.1063/1.3467450
-
Kim W, Javey A, Vermesh O, Wang O, Li Y and Dai H, 2003. Hysteresis caused
by water molecules in carbon nanotube field-effect transistors. Nano Lett.
3: 193–198. DOI:10.1021/nl0259232
-
Yi Zheng, Guang-Xin Ni, Sukang Bae, Chun-Xiao Cong, Orhan Kahya, Chee-Tat
Toh, Hye Ri, Kim, Danho Im, Ting Yu, Jong Hyun Ahn, Byung Hee Hong and
Barbaros Ozyilmaz, 2011. Wafer-scale graphene/ferroelectric hybrid devices
for low voltage electronics. Europ. Phys. Lett. 93: 17002. DOI:10.1209/0295-5075/93/17002
-
Emil B Song, Bob Lian, Sung Min Kim, Sejoon Lee, Tien-Kan Chung, Minsheng
Wang, Caifu Zeng, Guangyu Xu, Kin Wong, Yi Zhou, Haider I Rasool, David
H Seo, Hyun-Jong Chung, Jinseong Heo, Sunae Seo and Kang L Wang, 2011.
Robust bi-stable memory opera-tion in single-layer graphene ferroelectric
memory. Appl. Phys. Lett. 99: 042109. DOI:10.1063/1.3619816
-
Strikha M V, 2012. Mechanism of anti-hysteresis behavior in graphene-on-Pb(ZrxTi1-x)O3
substrate resis-tance. JETP Lett. 95: 198–200. DOI:10.1134/S002136401204008X
-
Ohtomo A, Muller D A and Grazul J L, Hwang H Y, 2002. Artificial charge-modulation
in atomic-scale perovskite titanate superlattices. Nature. 419: 378–380.
DOI:10.1038/nature00977PMid:12353030
-
Streiffer S K, Fuoss P H, Stephenson G B, Thompson Carol, Kim D M, Choi
K J, Eom C B, Grinberg I and Rappe A M, 2006. Stabilization of monodomain
polarization in ultrathin PbTiO3 films. Phys. Rev. Lett. 96: 127601. DOI:10.1103/PhysRevLett.96.127601
-
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Brooth T J, Stauber T,
Peres N M R and Geim A K, 2008. Fine structure constant defines visual
transparency of graphene. Science. 320: 1308. DOI:10.1126/science.1156965PMid:18388259
-
Strikha M V and Vasko F T, 2010. Electro-optics of graphene: Field-modulated
reflection and birefringence. Phys. Rev. B. 81: 115413. DOI:10.1103/PhysRevB.81.115413
-
Orlita M and Potemski M, 2010. Dirac electronic states in graphene systems:
optical spectroscopy studies. Topical review. Semicond. Sci. Technol. 25:
063001. DOI:10.1088/0268-1242/25/6/063001
-
Vasko F T, 2010. Saturation of interband absorption in graphene. Phys.
Rev. B. 82: 245422. DOI:10.1103/PhysRevB.82.245422
-
Ming Liu, Xiaobo Yin, Erik Ulin-Avila, Baisong Geng, Thomas Zentgraf, Long
Ju, Feng Wang and Xiang Zhang, 2011. A graphene-based broadband optical
modulator. Nature. 474: 64–67. DOI:10.1038/nature10067PMid:21552277
-
Bao Q, Zhang H, Wang B, Ni Zh, Haley C, Lim X, Wang Y, Tang D Y and Loh
K P, 2011. Broadband gra-phene polarizer. Nature Photonics. 5: 411–415.
DOI:10.1038/nphoton.2011.102
-
Strikha M V and Vasko F T, 2011. Carrier-induced modulation of light by
a gated graphene. J. Appl. Phys. 110: 083106. DOI:10.1063/1.3653837
-
Strikha M V, 2012. Bi-stable optical system, based on hysteresis in graphene-on-Pb(ZrxTi1–x)O3
reflectivity. Ukr. J. Phys. Opt. 13: 45–50. DOI:10.3116/16091833/13/1/45/2012
-
Lytovchenko V G, Strikha M V and Klyui M I, 2011. Modified graphene-like
films as a new class of semicon-ductors with a variable energy gap. Ukr.
J. Phys. 56: 175–178.
-
Geim A, 2011. Random wandering – unpredictable way towards graphene.
Uspekhi Fiz. Nauk. 181: 1286–1298. DOI:10.3367/UFNr.0181.201112e.1284
(c) Ukrainian
Journal of Physical Optics |