Ukrainian Journal of Physical Optics 

Supplement 3, 2012

Home page
 
 

Other articles 

in this supplement
Non-volatile memory and IR radiation modulators based upon graphene-on-ferroelectric substrate. A review

(Download full version)

Strikha M. V.

Abstract. I present a review of both experimental and theoretical studies performed during the recent three years, which deal with the physical properties and possible applications of graphene placed on ferroelectric (organic or Pb(ZrxTi1–x)O3 (PZT) ceramic) substrates. The system ‘graphene-on-ferroelectric substrate’ has unique ad-vantages in comparison with the graphene deposited on SiO2 or on dielectrics with high dielectric permittivity. In particular, one can obtain high (~ 1012 cm–2) carrier concentrations in the doped graphene-on-ferroelectric structures for moderate (of the order of 1 V) gate voltages. The existence of a hysteresis (or anti-hysteresis) in the dependence of electrical resistance of graphene channel on the gate voltage facili-tates creating bistable systems for different applications. The use of ferroelectric substrates has already enabled developing of robust elements of non-volatile mem-ory of a new generation. These elements operate for more than 105 switching cycles and store information for more than 103 s. Such systems can be characterised theo-retically by ultrafast switching rates (~ 10–100 fs). A theoretical analysis has also demonstrated that the structures ‘graphene-on-PZT ferroelectric substrate’ would re-sult in developing efficient and fast small-sized modulators of mid-IR and near-IR radiations for different optoelectronic applications. 

Keywords: graphene, ferroelectrics, non-volatile memory, modulators

UDC: 535.8, 535.3, 535.243, 537.226
PACS: 73.22.Pr, 78.67.Wj, 85.50.-n
Ukr. J. Phys. Opt. 13, Suppl.3, S5-S26 
doi: 10.3116/16091833/13/1/S5/2012
Received: 29.02.2011

Анотація. Подано огляд експериментальних і теоретичних робіт за останні три роки, у яких вивчають властивості та можливі застосування графену на сегнетоелектричній підкладці (органічному сегнетоелектрику або кераміці Pb(ZrxTi1–x)O3 (скорочено PZT)). Графен на сегнетоелектричній підкладці має декілька унікальних переваг, порівняно з графеном на підкладці SiO2 або на діелектриках з високою діелектричною проникністю. У легованому затвором графені на сегнетоелектрику можна одержати високі (~ 1012–2) концентрації носіїв для невисоких (порядку 1 В) напруг на затворі. Наявність гістерезису (або антигістерезису) на залежності питомого опору графенового каналу від напруги на затворі дає змогу створювати бістабільні системи для різних застосувань. Використання сегнетоелектричних підкладок для графену уможливило створення надійних елементів енергонезалежної пам’яті нового покоління. Ці елементи витримують понад 105 перемикань, працюють і зберігають інформацію упродовж понад 103 с. Теоретично їх можна характеризувати ультрашвидким перемиканням (~ 10–100 фс). Теоретично також було доведено, що на основі графену на сегнетоелектричній підкладці PZT можна створити ефективні, швидкодійні й мініатюрні модулятори випромінювання близького та середнього ІЧ-діапазонів. 

REFERENCES
  1. Geim A, 2009. Graphene: status and prospects. Science. 324: 1530–1934.

  2. DOI:10.1126/science.1158877PMid:19541989
  3. Novoselov K, 2011. Graphene: Materials in the Flatland. Uspekhi Fiz. Nauk. 181: 1299–1311. DOI:10.3367/UFNr.0181.201112f.1299
  4. Das Sarma S, Shaffique Adam, Hwang E H and Enrico Rossi, 2011. Electronic transport in two dimensional graphene. Rev. Mod. Phys. 83: 407–470. DOI:10.1103/RevModPhys.83.407
  5. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A, 2004. Electric field effect in atomically thin carbon films. Science. 306: 666–669. DOI:10.1126/science.1102896PMid:15499015
  6. Gusynin V P and Sharapov S G, 2005. Unconventional integer quantum Hall effect in graphene. Phys. Rev. Lett. 95: 146801. DOI:10.1103/PhysRevLett.95.146801PMid:16241680
  7. Gusynin V P and Sharapov S G, 2006. Transport of Dirac quasiparticles in graphene: Hall and optical conduc-tivities. Phys. Rev. B. 73: 245411. DOI:10.1103/PhysRevB.73.245411
  8. Gusynin V P, Sharapov S G and Beck H, 2004. Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations. Phys. Rev. B. 69: 075104. DOI:10.1103/PhysRevB.69.075104
  9. Gusynin V P and Sharapov S G, 2005. Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations. II. Transport properties. Phys. Rev. B. 71: 125124. DOI:10.1103/PhysRevB.71.125124
  10. Gusynin V P, Sharapov S G and Carbotte J P, 2006. Unusual microwave response of Dirac quasiparticles in graphene. Phys. Rev. Lett. 96: 256802. DOI:10.1103/PhysRevLett.96.256802 PMid:16907333
  11. Peres N M R, 2010. Colloquium: The transport properties of graphene: An introduction. Rev. Mod. Phys. 82: 2673–2700. DOI:10.1103/RevModPhys.82.2673
  12. Vasko F T and Raichev O E, Quantum kinetic theory and applications. New York: Springer, 2005. 
  13. Gusynin V, Loktev V and Sharapov S, 2010. Graphene: unbelievable became possible. Visnyk NAN Ukraine. 12: 51–59.
  14. Strikha M V, 2011. Non-equilibrium electrons and holes in graphene (Review). Sensor Electronics & Microsys-tem Technologies. 2(8): 10–19. 
  15. Seyoung Kim, Junghyo Nah, Insun Jo, Davood Shahrjerdi, Luigi Colombo, Zhen Yao, Emanuel Tutuc and San-jay K Banerjee, 2009. Realization of a high mobility dual-gated graphene field effect transistor with Al2O3 di-electric. Appl. Phys. Lett. 94: 062107. DOI:10.1063/1.3077021
  16. Annirudha Konar, Tian Fang and Depdeep Jena, 2010. Effect of high-κ gate dielectrics on charge transport in graphene-based field effect transistors. Phys. Rev. B. 82: 115452. DOI:10.1103/PhysRevB.82.115452
  17. M V Strikha, 2011. Modulation of a mid-IR radiation by a gated graphene on ferroelectric substrate. Ukr. J Phys. Opt. 12: 162–165. 
  18. Yi Zheng, Guang-Xin Ni, Chee-Tat Toh, Ming-Gang Zeng, Shu-Ting Chen, Kui Yao and Barbaros Özyilmaz, 2009. Gate-controlled nonvolatile graphene-ferroelectric memory. Appl. Phys. Lett. 94: 163505. DOI:10.1063/1.3119215
  19. Zheludev I S, Fundamentals of ferroelectricity. Moscow: Atomizdat, (1973). 
  20. Strukov B A and Levanyuk A P, Ferroelectric phenomena in crystals: Physical foundations. Moscow: Nauka, (1983).
  21. Valasek J, 1921. Piezoelectric and allied phenomena in Rochelle salt. Phys. Rev. 17: 537–541. DOI:10.1103/PhysRev.17.475
  22. Rouquette J, Haines J, Bornand V, Pintard M, Papet Ph, Bousquet C, Konczewicz L, Gorelli F and Hull S, 2004. Pressure tuning of the morphotropic phase boundary in piezoelectric lead zirconate titanate. Phys. Rev. B. 70: 014108. DOI:10.1103/PhysRevB.70.014108
  23. Liu W, Jiang B and Zhu W, 2000. Self-biased dielectric bolometer from epitaxially grown Pb(Zr,Ti)O3 and lan-thanum-doped Pb(Zr,Ti)O3 multilayered thin films. Appl. Phys. Lett. 77: 1047–1049. DOI:10.1063/1.1289064
  24. Scott J F, Ferroelectric memories. New York: Springer, (2000). 
  25. Dawber M, Rabe K M and Scott J F, 2005. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77: 1083–1130. DOI:10.1103/RevModPhys.77.1083
  26. Morozovska H M and Sviechnikov H S, 2010. Effects of memory in heterostructures on polarly active nano-films. Ukr. J. Phys. 6: 140–170. 
  27. Hlinchuk M D, Yeliseev Ye A and Morozovska H M, 2009. Size effects in ferroelectric nanomaterials. Ukr. J. Phys. 5: 34–60. 
  28. Kohlstedt H, Pertsev N A, Contreras Rodrigues J and Waser R, 2005. Theoretical current-voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B. 72: 125341. DOI:10.1103/PhysRevB.72.125341
  29. Zhuravlev M Ye, Sabirianov R F, Jaswal S S and Tsymbal E Y, 2005. Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94: 246802–4. DOI:10.1103/PhysRevLett.94.246802
  30. Ramesh R and Spaldin N A, 2007. Multiferroics: progress and prospects in thin films. Nature Materials. 6: 21–29. DOI:10.1038/nmat1805PMid:17199122
  31. Noel A Clark and Sven Torbjörn Lagerwall, 1980. Submicrosecond bistable electro-optic switching in liquid crystals. Appl. Phys. Lett. 36: 899–901. DOI:10.1063/1.91359
  32. Yi Zheng, Guang-Xin Ni, Chee-Tat Toh, Chin-Yaw Tan, Kui Yao and Barbaros Özyilmaz, 2010. Graphene field effect transistors with ferroelectric gating. Phys. Rev. Lett. 105: 166602. DOI:10.1103/PhysRevLett.105.166602
  33. Santosh Raghavan, Igor Stolichnov, Nava Setter, Jean-Savin Heron, Mahmut Tosun and Andras Kis, 2012. Long-term retention in organic ferroelectric-graphene memories. Appl. Phys. Lett. 100: 023507. DOI:10.1063/1.3676055
  34. Hong X, Hoffman J, Posadas A, Zou K, Ahn C H and Zhu J, 2010. Unusual resistance hysteresis in n-layer gra-phene field effect transistors fabricated on ferroelectric Pb(Zr0.2Ti0.8)O3. Appl. Phys. Lett. 97: 033114. DOI:10.1063/1.3467450
  35. Kim W, Javey A, Vermesh O, Wang O, Li Y and Dai H, 2003. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 3: 193–198. DOI:10.1021/nl0259232
  36. Yi Zheng, Guang-Xin Ni, Sukang Bae, Chun-Xiao Cong, Orhan Kahya, Chee-Tat Toh, Hye Ri, Kim, Danho Im, Ting Yu, Jong Hyun Ahn, Byung Hee Hong and Barbaros Ozyilmaz, 2011. Wafer-scale graphene/ferroelectric hybrid devices for low voltage electronics. Europ. Phys. Lett. 93: 17002. DOI:10.1209/0295-5075/93/17002
  37. Emil B Song, Bob Lian, Sung Min Kim, Sejoon Lee, Tien-Kan Chung, Minsheng Wang, Caifu Zeng, Guangyu Xu, Kin Wong, Yi Zhou, Haider I Rasool, David H Seo, Hyun-Jong Chung, Jinseong Heo, Sunae Seo and Kang L Wang, 2011. Robust bi-stable memory opera-tion in single-layer graphene ferroelectric memory. Appl. Phys. Lett. 99: 042109. DOI:10.1063/1.3619816
  38. Strikha M V, 2012. Mechanism of anti-hysteresis behavior in graphene-on-Pb(ZrxTi1-x)O3 substrate resis-tance. JETP Lett. 95: 198–200. DOI:10.1134/S002136401204008X
  39. Ohtomo A, Muller D A and Grazul J L, Hwang H Y, 2002. Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature. 419: 378–380. DOI:10.1038/nature00977PMid:12353030
  40. Streiffer S K, Fuoss P H, Stephenson G B, Thompson Carol, Kim D M, Choi K J, Eom C B, Grinberg I and Rappe A M, 2006. Stabilization of monodomain polarization in ultrathin PbTiO3 films. Phys. Rev. Lett. 96: 127601. DOI:10.1103/PhysRevLett.96.127601
  41. Nair R R, Blake P, Grigorenko A N, Novoselov K S, Brooth T J, Stauber T, Peres N M R and Geim A K, 2008. Fine structure constant defines visual transparency of graphene. Science. 320: 1308. DOI:10.1126/science.1156965PMid:18388259
  42. Strikha M V and Vasko F T, 2010. Electro-optics of graphene: Field-modulated reflection and birefringence. Phys. Rev. B. 81: 115413. DOI:10.1103/PhysRevB.81.115413
  43. Orlita M and Potemski M, 2010. Dirac electronic states in graphene systems: optical spectroscopy studies. Topical review. Semicond. Sci. Technol. 25: 063001. DOI:10.1088/0268-1242/25/6/063001
  44. Vasko F T, 2010. Saturation of interband absorption in graphene. Phys. Rev. B. 82: 245422. DOI:10.1103/PhysRevB.82.245422
  45. Ming Liu, Xiaobo Yin, Erik Ulin-Avila, Baisong Geng, Thomas Zentgraf, Long Ju, Feng Wang and Xiang Zhang, 2011. A graphene-based broadband optical modulator. Nature. 474: 64–67. DOI:10.1038/nature10067PMid:21552277
  46. Bao Q, Zhang H, Wang B, Ni Zh, Haley C, Lim X, Wang Y, Tang D Y and Loh K P, 2011. Broadband gra-phene polarizer. Nature Photonics. 5: 411–415. DOI:10.1038/nphoton.2011.102
  47. Strikha M V and Vasko F T, 2011. Carrier-induced modulation of light by a gated graphene. J. Appl. Phys. 110: 083106. DOI:10.1063/1.3653837
  48. Strikha M V, 2012. Bi-stable optical system, based on hysteresis in graphene-on-Pb(ZrxTi1–x)O3 reflectivity. Ukr. J. Phys. Opt. 13: 45–50. DOI:10.3116/16091833/13/1/45/2012
  49. Lytovchenko V G, Strikha M V and Klyui M I, 2011. Modified graphene-like films as a new class of semicon-ductors with a variable energy gap. Ukr. J. Phys. 56: 175–178. 
  50. Geim A, 2011. Random wandering – unpredictable way towards graphene. Uspekhi Fiz. Nauk. 181: 1286–1298. DOI:10.3367/UFNr.0181.201112e.1284
(c) Ukrainian Journal of Physical Optics